
M. Vellante, M. Piersanti, E. Pietropaolo, U.

Villante, M. De Lauretis, P. Francia, A. Piancatelli

Physics Department, University of L'Aquila, Italy

SEGMA (South European GeoMagnetic Array) (1.56 < L < 1.88)

URL: http://sole-terra.aquila.infn.it/staz_segma.asp?lang=en

3 gradient i	nstalla	tions
Stations I	Latitud separ.	. L
NCK - CST	1.9°	1.83
CST - RNC	2.5°	1.71
RNC - AQU	1.9°	1.61

Cooperating institutions:

- University of L'Aquila, Italy
- · Space Research Institute (IWF), Graz, Austria
- · Geodetic and Geophysical Research Institute, Sopron, Hungary
- · Geophysical Institute, Sofia, Bulgaria

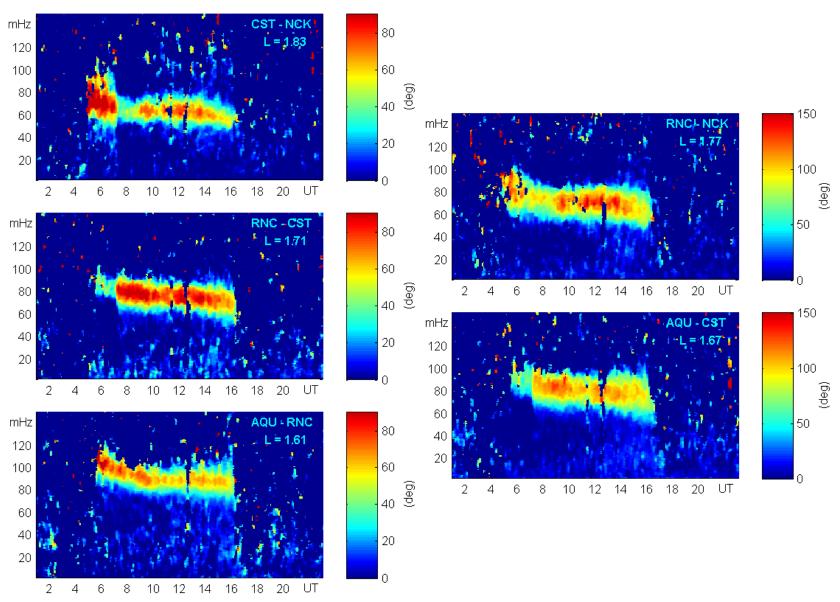
SEGMA array, coordinates of the recording stations

Station	Geograph . Coord.	CGM Coord.		Start of operation	Magnetometer type
Nagycenk (NCK)	47.63 N 16.73 E	42.79 N 91.41 E	1.89	1999	fluxgate
Castello Tesino (CST)	46.05 N 11.65 E	40.84 N 86.63 E	1.78	2000	fluxgate
Ranchio (RNC)	43.97 N 12.08 E	38.28 N 86.58 E	1.65	2001	fluxgate
L'Aquila (AQU)	42.38 N 13.32 E	36.33 N 87.37 E	1.57	1985	fluxgate, induction
Panagyurishte (PAG)	42.51 N 24.18 E	37.02 N 97.24 E	1.60	2003	induction

Main features of the fluxgate instrument and data acquisition

- 0.01 nT resolution
- Max. data rate 64 vectors/sec
- Standard final sampling rate: 1Hz
- Absolute time via GPS receiver

Check operations and data recovery made frequently at AQU, NCK and PAG. Once every 1-2 months at CST and RNC.

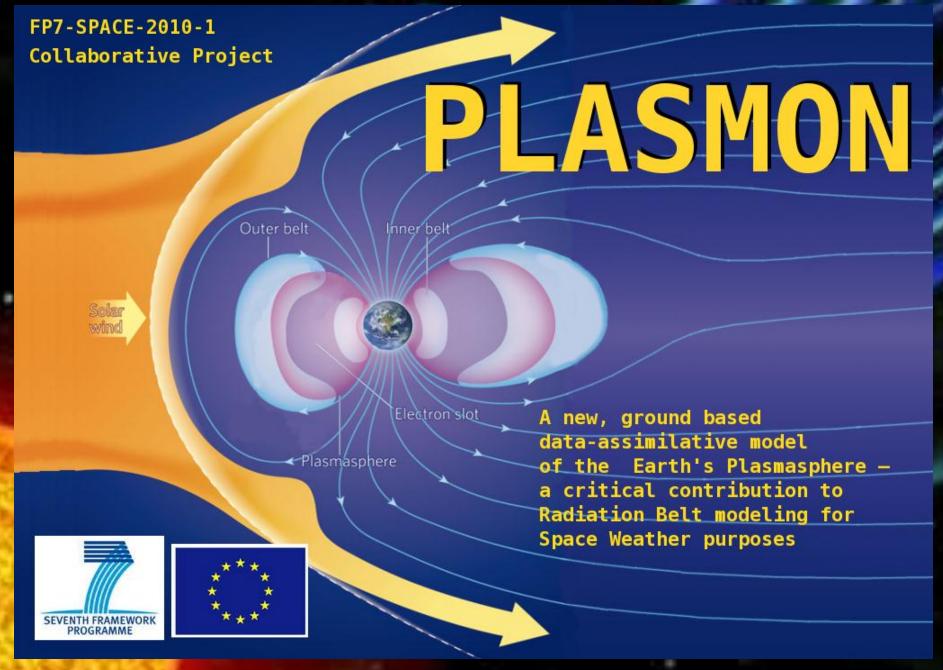

From the SEGMA WEB site (http://sole-terra.aquila.infn.it/staz_segma.asp?lang=en) it is possible to get:

-user defined magnetograms;

- -daily dynamic cross-phase spectra which visualize the diurnal variation of the FLR frequency → plasmasphere mass density;
- hourly values of FLR frequencies (L = 1.61, 1.83)
 and inferred equatorial plasma mass densities

An example of daily dynamic cross-phase spectra from the SEGMA WEB site

SEGMA Cross-phase spectra, 2005 - 253, September 10


REMOTE SENSING OF THE PLASMASPHERE MASS DENSITY

Hourly values of the estimated fundamental geomagnetic field-line resonance (FLR) frequency at L = 1.61, 1.83, and inferred equatorial mass density.

readme			
2001	2002	2003	
2004	2005	2006	
2007	2008		

<u>Visualization</u> of daily variations of the FLR frequency by dynamic cross-phase spectra.

ITALIANO SE ENGL	ISH
PRESENTATION	Ø
STAFF	图
RESEARCH ACTIVITIES	e
PUBLICATIONS	Ø
	2
MAGNETIC STATIONS	e
MAGNETIC STATIONS L'Aquila (Italy)	2
MAGNETIC STATIONS L'Aquila (Italy) SEGMA Array (Italy, Hungary) + Remote sensing of the	9
MAGNETIC STATIONS L'Aquila (Italy) SEGMA Array (Italy, Hungary) + Remote sensing of the plasmasphere mass density	
MAGNETIC STATIONS L'Aquila (Italy) SEGMA Array (Italy, Hungary) + Remote sensing of the plasmasphere mass density + Cross-Phase Spectra	
MAGNETIC STATIONS L'Aquila (Italy) SEGMA Array (Italy, Hungary) + Remote sensing of the plasmasphere mass density + Cross-Phase Spectra Panagyurishte (Bulgary)	

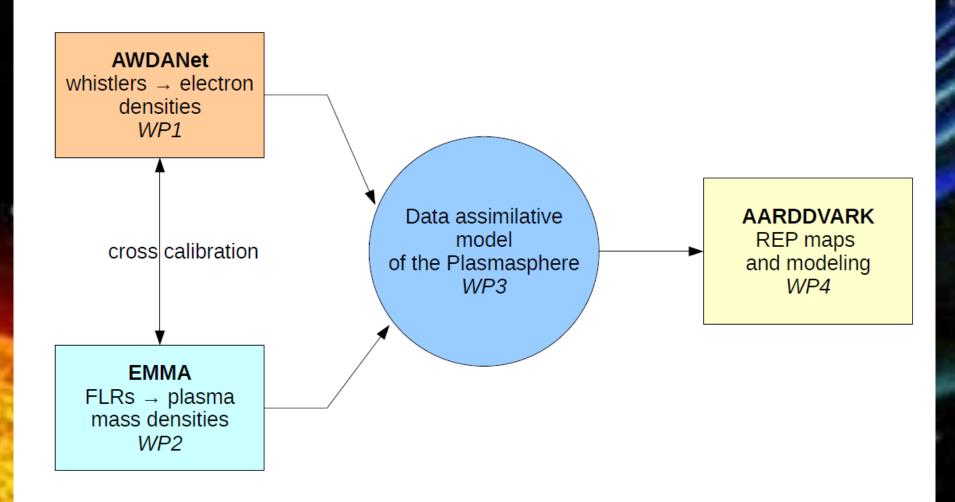
Theme: Security of space assets from space weather events

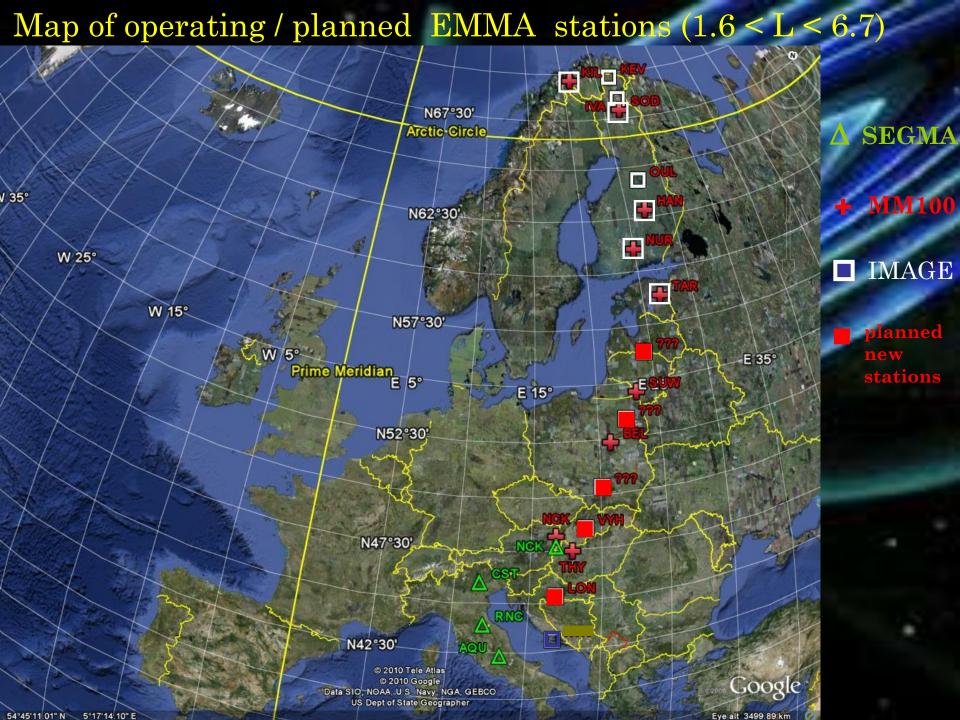
Project goal

Continuous remote monitoring of the plasmasphere conditions using ULF/VLF wave measurements from a world wide network of stations.

This information will be used to model loss processes occurring in the radiation belts.

Project duration: 42 months (1 February 2011 - 31 July 2014)


Participating Institutions

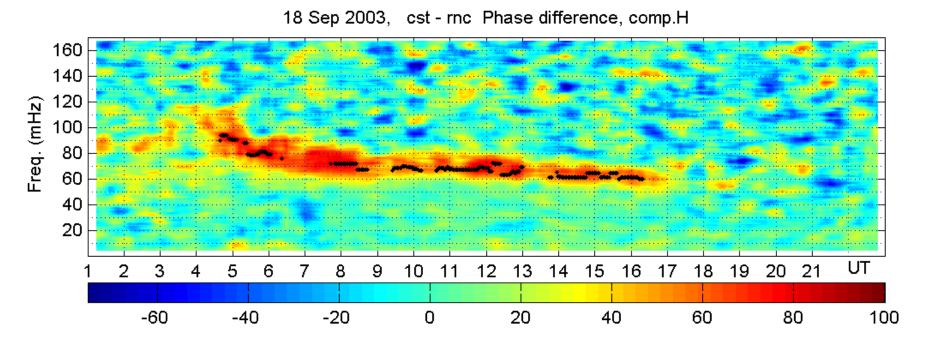

Short name	Institution	Country
1 ELTE	Eötvös Loránd University (Coordinator)	Hungary
2 NERC-BAS	British Antarctic Survey	UK
3 ELGI	Eötvös Loránd Geophysical Institute	Hungary
4 UNIVAQ	University of L'Aquila	Italy
5 UOULU	Sodankyla Geophysical Observatory	Finland
6 UO	University of Otago	New Zealand
7 HMO	Hermanus Magnetic Observatory	South Africa
8 NMT	New Mexico Inst. of Mining and Technology	USA
9 IGPAS	Inst. of Geophysics, Polish Acad. of Scien.	Poland
10 UW	University of Washington	USA
11 LANL	Los Alamos National Laboratory	USA

Work packages

		Title	Lead participant
	WP1	Automatic retrieval of equatorial electron densities and density profiles by Automatic Whistler Detector and Analyzer Network (AWDANet)	Eotvos University
	WP2	Retrieval of equatorial plasma mass densities by magnetometer array (EMMA) and	L'Aquila
		cross-calibration of whistler and FLR method	University
	WP3	Data assimilative modeling of the Earth's plasmasphere	New Mexico Inst.
à	WP4	Modeling REP losses in radiation belts based on AARDDVARK network	BAS

PLASMON structure

Map of operating (+) / planned (**D**) South Africa stations



WP2 objectives

- 1. Unify and extend SEGMA, MM100 and IMAGE networks into EMMA (+ S.Africa stations) to have better latitudinal coverage (3 new stations by month 12, other 4 new stations by month 24): ELGI, IGPAS, HMO
- 2. Develop an automatic FLR identification method [month 24]: UNIVAQ, ELGI, IGPAS
- 3. Develop an automatic FLR inversion method [month 24]: UNIVAQ, ELGI, IGPAS, (NMT)
- 4. Develop all EMMA stations to work in quasi-real-time mode of operation [month 42]: ELGI, IGPAS, HMO, UNIVAQ, FMI
- 5. Evaluate relative abundances of heavy ions in the plasma composition from simultaneous determinations of mass density (FLR method) and electron density (whistler metod) [month 42]: ELGI, UNIVAQ, ELTE, (LANL, NERC-BAS, NMT, UO, HMO, UOULU)

Automated selection of FLR frequencies (objective 2)

UNIVAQ, ELGI, IGPAS delivery date: month 24

- Current algorithms (from *Berube et al. 2003*) used by UNIVAQ and ELGI: to be improved, and fully automatized.
- \sim 1 mHz frequency resolution, \sim 20 min time resolution.
- Specific version for each station pair (because of different latitude, interstation separation, ground conductivity, noise level, etc.).
- All versions running on a central server where data must arrive in quasi-real time.

Automatic FLR inversion (objective 3)

UNIVAQ, ELGI, IGPAS, (NMT) delivery date: month 24

The inversion algorithm has to convert FLR frequencies into estimates of the equatorial plasma mass density (1.6 < L < 6.7).

Need to consider geomagnetic field geometry (*Tsyganenko*, *Singer et al.*, 1981) more realistic than dipole geometry; important at high latitudes, and even at middle latitudes during severe geomagnetic storms.

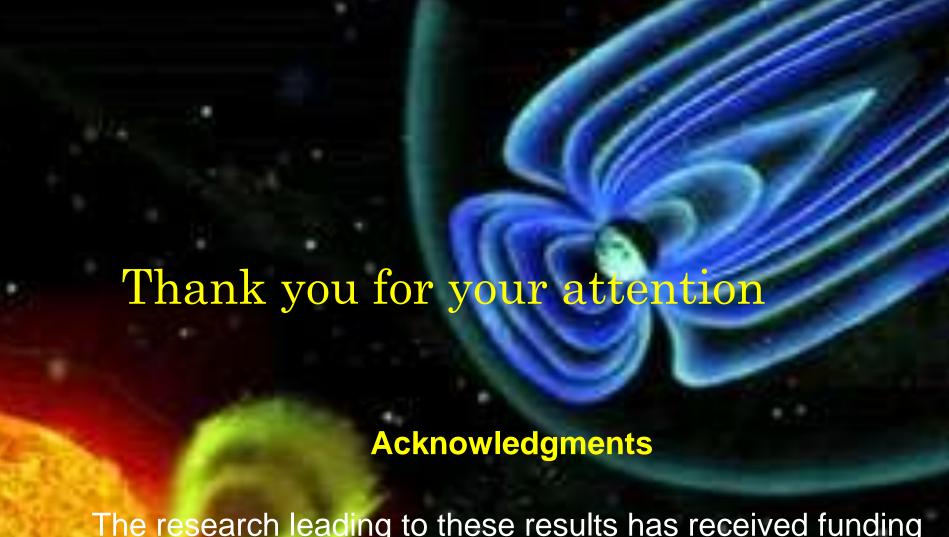
Realistic plasma distribution models for low latitudes (power law not very good).

All magnetometer stations working in quasi-real-time (objective 4)

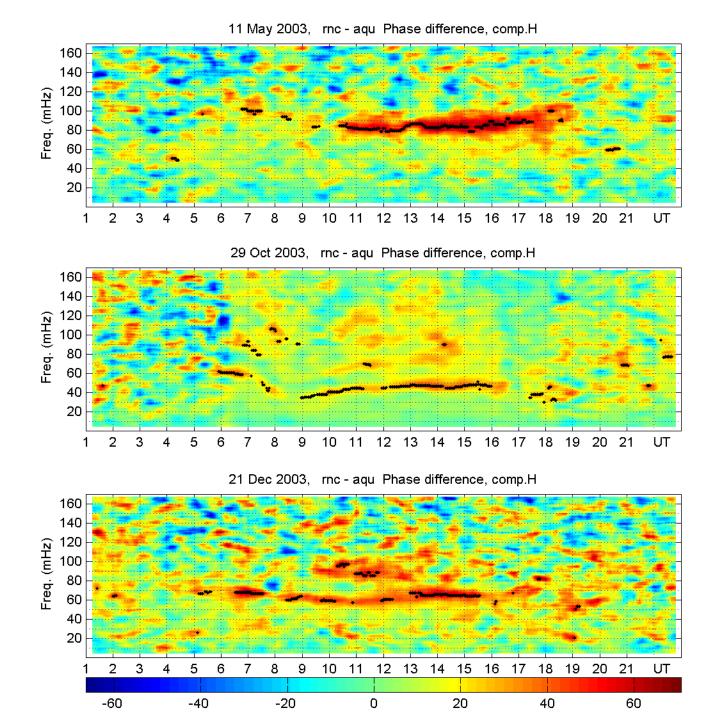
ELGI, IGPAS, HMO, UNIVAQ, FMI delivery date: month 42

Upgrading the DAQ hardware and software to provide real-time accessibility of the data.

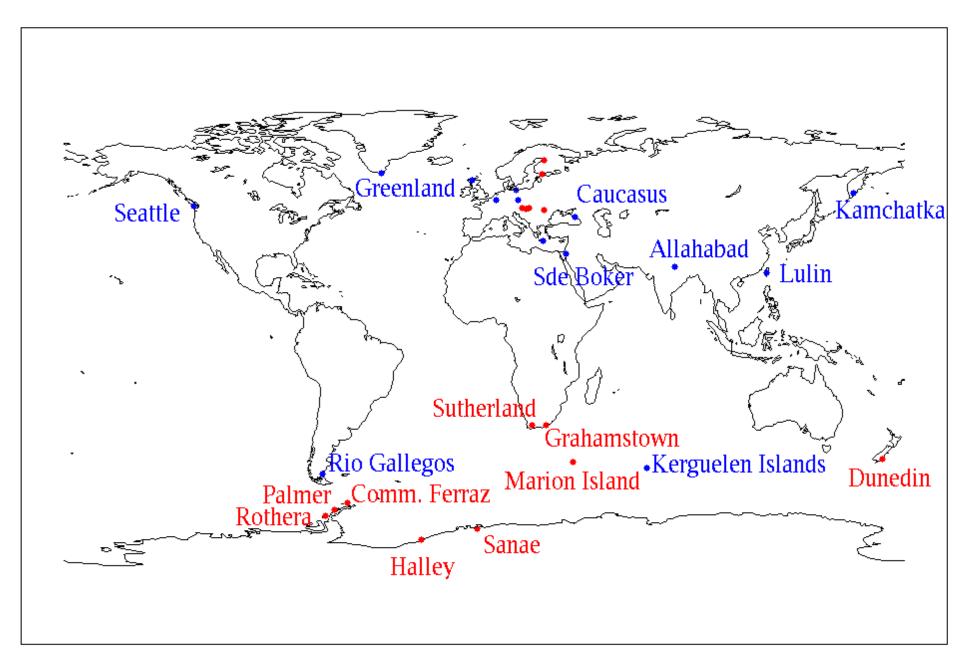
Data from each station transferred every 15 min to the central server, where they will be processed to get FLR frequencies and plasma mass densities.


Cross-calibration method for whistlers and FLRs (objective 5)

ELGI, UNIVAQ, ELTE, (LANL, NERC-BAS, NMT, UO, HMO, UOULU) delivery date: month 42

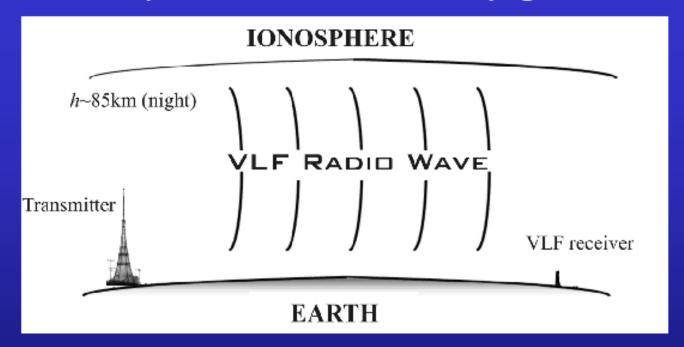

When simultaneously available, plasma mass densities from FLRs and electron densities from whistlers will be cross-correlated (for separate magnetospheric activity conditions), both for validating the two methods, and for obtaining evaluations on the relative abundances of heavy ions.

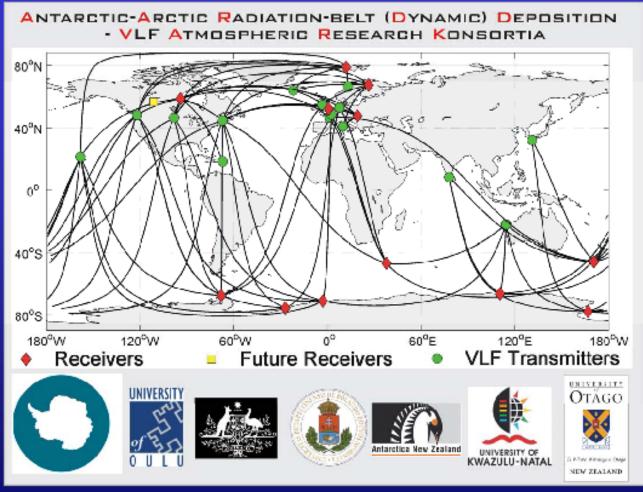
In addition, comparisons with in-situ satellite measurements (e.g., MPA data from LANL) will be extremely useful for a direct validation.


At the end, a procedure has to be developed for weighting the data from the two methods.

The research leading to these results has received funding from the European Union Seventh Framework Programme [FP7/2007-2013] under grant agreement n°263218

Network of whistler detectors




Subionospheric Radio Wave Propagation

Radio transmissions at Very Low Frequencies (VLF) largely trapped between the conducting ground (or sea) and the lower part of the ionosphere (70-90 km), forming the Earth-ionosphere waveguide.

Changes in the ionosphere causes changes in the received signal. There is very low attenuation in this frequency range, such that transmissions can propagate for many 1000km's - long range sensing of the upper atmosphere!

Our AARDDVARK

An aarmory of AARDDVARKs. This map shows our <u>existing</u> network of subionospheric energetic precipitation monitors.

MORE INFORMATION: www.physics.otago.ac.nz\space\AARDDVARK_homepage.htm