

Obtained by MAGDAS Data

Yosuke Yamazaki^[1], Kiyohumi Yumoto^[1], D. Mcnamara^[2], Huixin Liu^[1], Akihiro Ikeda^[1], Shuji Abe^[1], Teiji Uozumi^[1], Yoshimasa Tanaka^[3], Toshihiko Hirooka^[1], and MAGDAS/CPMN Group

[1] Kyushu University[2]Manila Observatory[3] National Institute of Polar Research

1.1 Sudden Stratospheric Warming (SSW)

Rapid increase of the polar stratospheric temperature
Distribution of east-west zonal wind in the middle atmosphere global circulation.

1.2 Impact of SSW on the Middle/Upper Atmosphere

1.3 Impact of SSW on the Equatorial Ionospere

1.4 Impact of SSW on the Equatorial Electrojet

1.5 Enhancement of the Lunar Tidal Wind

Earlier simulation of the lunar tide during SSW:

1-D [Height]	Increase in T by 9[K]
<i>Sawada</i> [1954, Thesis] <i>Sawada</i> [1956, Geophys. Mag.]	at stratopause ↓ Increase in L amplitude by a facotr of 2.4 at E region

2-D LHeight, La	t」
-----------------	----

Stening et al. [1997, JGR]

<u>can support Fejer et al.'s idea.</u>

1.7 Remaining Issues

[1] Lack of case studies

Fejer et al. [2010, JGR]

Only 3 CEJ Events

Statistical approach will be needed.
→ underway [Yamazaki et al.]

[2] Lack of global studies

- Although lunar tidal effects should be global, there is no study on the global magnetic effects during SSWs.
- A data set that can cover both the Northern Hemisphere and the Southern Hemisphere is needed.

2. Data Set

Event Winter months during: [1] 2001–2002 [2] 2002-2003 Data Source MAGDAS/210MM Intermagnet WDC, Kyoto

> Disturbances Removed [H] - [SYM-H]

3. Analysis Method

4.1 SSW Effects at the Equator (2001-2002)

Enhanced semidiurnal variation in R during the SSW

4.1.2 Ionospheric Current System (2001-2002)

The additional current system shows the semidurnal pattern

4.2 Ionospheric Lunar Current System

4.3 SSW Effects at the Equator (2002-2003)

Enhanced semidiurnal variation in R during the SSW

4.3.2 Ionospheric Current System (2002-2003)

The additional current system shows the semidurnal pattern

4.4 Current System after the CEJ

2001-2002 Event

2002-2003 Event

A time shift of the vortex position by ~0.8 hour/day

5. Summary

■ Magnetic data during SSW events in the winter months of 2001-2002 and 2002-2003 are analyzed.

Common features :

■ The CEJ is observed during the SSW events.

■ Onsets are new moon and full moon for the 2001-2002 event and 2002-2003 event, respectively.

The additional current system shows semidiurnal current pattern during the CEJ.

A time shift of the vortex position by 0.8 hour/day is observed.

 \rightarrow Characteristics of the additional current system during the SSW events are consistent with these of the lunar current system

Thank You for Your Attention!