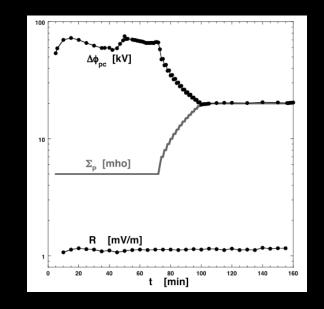
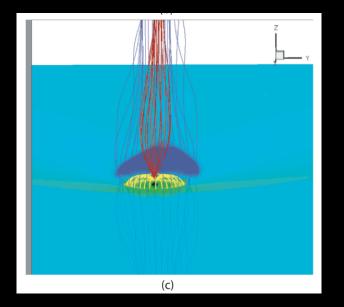
Division III Reporter Review: Global Dynamics

M.Wiltberger NCAR/HAO

Task and Scope

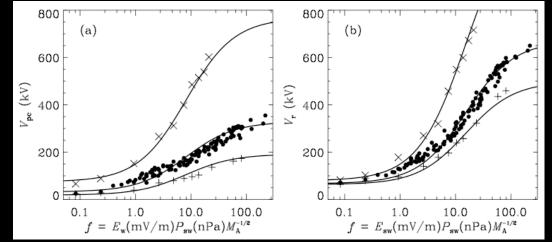

- Provide a review of the literature related to modeling the interaction of the magnetosphere-ionosphere system with the solar wind on a global scale
- Scope
 - Only included peer reviewed publications in major journals, e.g. JGR, GRL, SW, AG, JASTP, from 7/07 to 7/09
 - Reporting content of papers not providing any scientific assessment
 - Papers must have a global modeling as a significant component
 - Only 30 minutes so the coverage is not comprehensive
 - Apologies to papers I may have had to skip for time

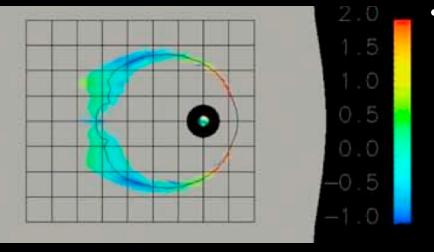

Broad Topic Areas

- Polar Cap Potential Saturation
 - Modeling efforts to understand the nonlinear saturation of the polar cap potential
- Substorms
 - Efforts to model the onset and evolution of substorms
- Dayside Reconnection
 - Structure and dynamics of the magnetic reconnection process on the dayside especially FTEs
- Validation and Verification
 - Studies assessing the accuracy of global models
- Multifluid Modeling
 - Developments related to modeling with more than one fluid including ionospheric outflow
- Energy conversions
 - Using models to study the transfer of energy between regions
- Miscellaneous
 - Papers that didn't fit, but had neat ideas

Polar Cap Potential Saturation

- Borovsky et al., JGR, 2009
 - Used the BATSRUS model at the CCMC
 - Modified to include a high resistivity spot on magnetopause
 - Local reconnection rate is independent of \mathbb{M}_{P}
 - Shape and location of magnetosphere changes with \mathbb{M}_{P}
 - Solar wind acts as a current limited voltage source
 - Provides a summary of 9 saturation models

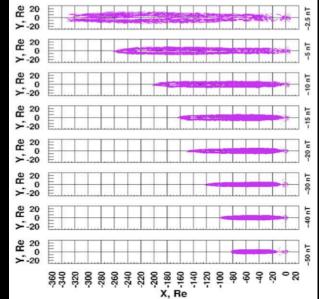



- Kivelson and Ridley, JGR, 2008
 - Used the BATSRUS model
 - When solar wind impendence exceeds ionospheric impendence Alfven waves are partial reflected limiting the signal to the polar cap

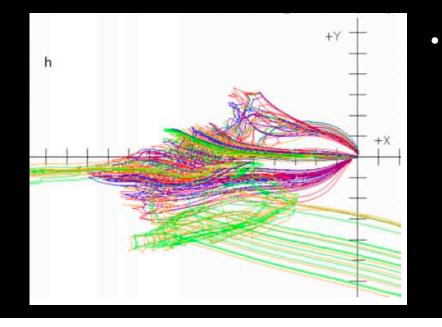
$$\frac{\Phi_{PC}}{\Phi_{SW}} = \frac{2\Sigma_A}{\Sigma_P + \Sigma_A}$$

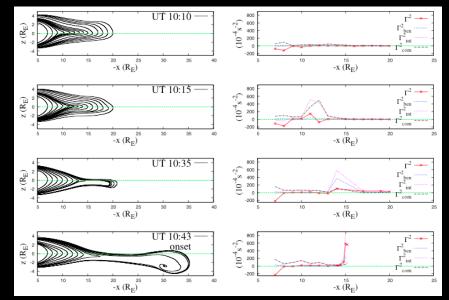
Polar Cap Potential Saturation II

- Peng et al., JGR, 2009
 - Used the PPMLR Model
 - Find that \bigotimes_{PC} and \bigotimes_{R} have similar saturation characteristics especially when parameterized as function of E_{SW} , P_{RAM} and M_A
 - Sets the level at which saturation occurs



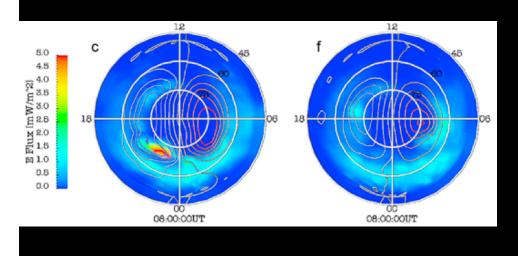
- Lopez et al., JGR, 2009
 - Used the LFM model
 - Noted that while
 [™]_{PC} saturates the ring current injection rate does not
 - In these simulation results the reconnection line moves earthward injecting flux tubes with lower PV^I which can penetrate further

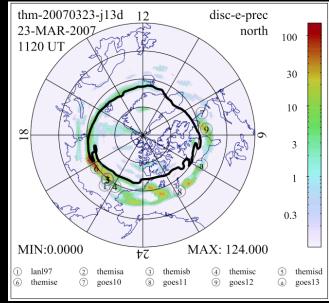

Polar Cap Potential Saturation III


- Merkin et al., JGR, 2007
 - Used the LFM Model
 - Found that in addition to \mathbf{W}_{PC} saturating the A_{PC} also saturates
 - A_{PC} saturates faster then
 [™]_{PC} as IMF increases
 - A_{PC} saturation is a result of lobes bulging sunward and shielding the dipole from reconnection

Substorms

- Zhu et al., AG, 2009
 - Used the OpenGGCM Model
 - Event study of 23 March 2007 substorm onset
 - Well observed by THEMSIS
 - Noted a correlation between the breaching of the ballooning stability condition and the initial onset of the substorm in the simulation

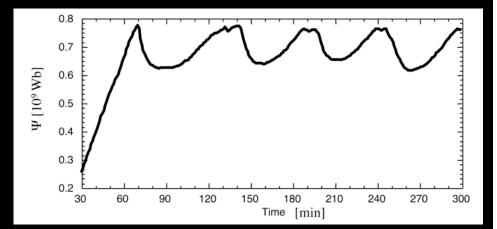




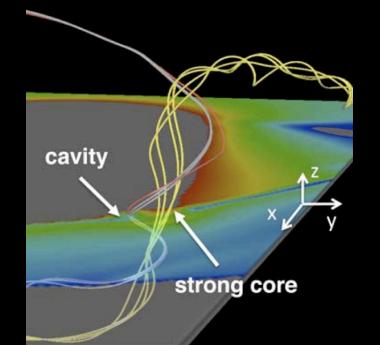
- Farr et al., JGR, 2008
 - Used the LFM model
 - Examined the 3D structure and evolution of plasmoid during a substorm on 11 Aug 2002
 - Results agreed well with multiple observations
 - Flux ropes are highly structured with winding of open and closed field lines and asymmetries tailward motion

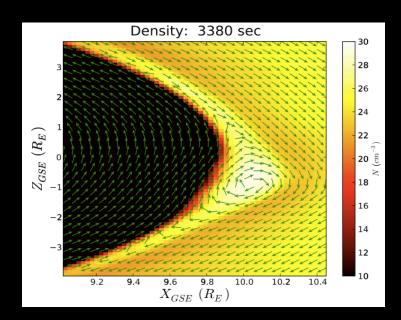
Substorms II

- Raeder et al., SSR, 2008
 - Used the OpenGGCM Model
 - Event study of 23 March 2007 substorm onset
 - Results show agreement with multiple satellite observations
 - Used simulation results to illustrate placement of satellites during event



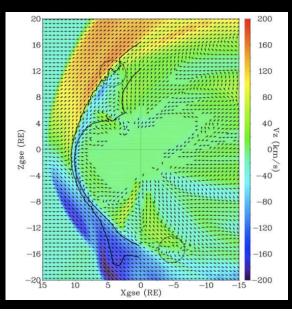
- Wiltberger et al., JGR, 2009
 - Used the LFM model
 - Examined the seasonal variation in response of the MI coupling when changes in solar wind driving are eliminated
 - Developed a model for particle precipitation that acts as a proxy for solar illumination and results in enhanced activity during equinox

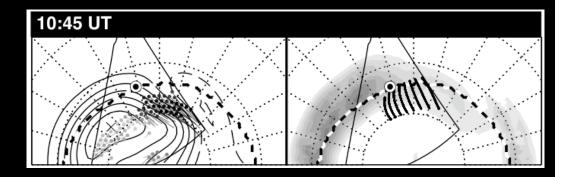

Substorms III


- Kuznetsova et al., JGR, 2007
 - Used the OpenGGCM Model
 - Modified the resistivity near the diffusion region to emulated kinetic effects by including nongyrotopic corrections in the induction equation
 - Obtained periodic loading/unloading cycle in magnetotail dynamics

Dayside Reconnection

- Dorelli and Bhattacharjee, JGR, 2009
 - Used the OpenGGCM Model
 - Used high grid resolution to examine the formation of FTEs during steady solar wind conditions
 - FTEs occur at MP when IMF southward
 - No dipole tilt required
 - FTEs contain complex topology

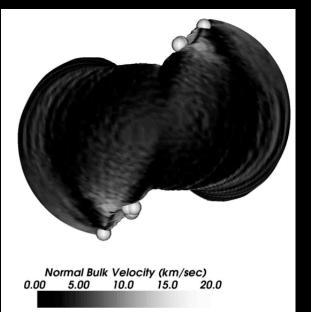


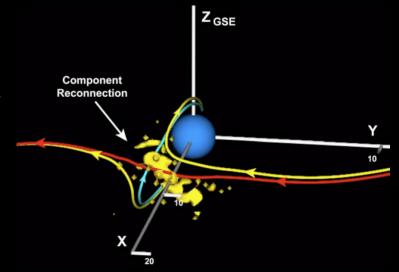


- Kuznetsova et al., GRL, 2009
 - Used the BATSRUS model
 - Examined simulations with high spatial and temporal resolution to resolve cavities of weak magnetic field in the wakes of FTEs
 - Results agree well with recent multi-point Cluster observations
 - Core and cavity move together toward the flanks

Dayside Reconnection II

- Daum et al., JGR, 2008
 - Used the BATSRUS Model
 - Event study of 14 March 2001
 - Well observed by Cluster and SuperDARN
 - Combined simulation results with Cooling FTE motion model to examine the temporal evolution of the FTE and found good correlation with observations

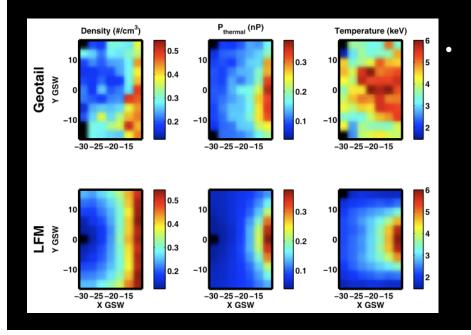


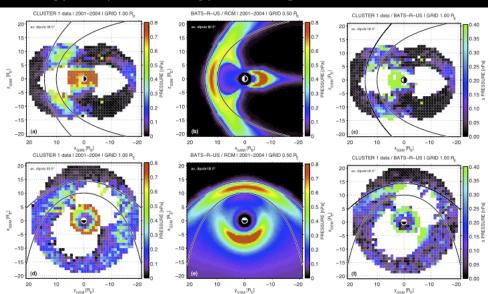


- Li et al., JGR, 2009
 - Used the OpenGGCM model
 - Event study of 3 June 2007
 - Well observed by THEMIS
 - Model reproduces the cold dense boundary layer
 - Reconnection starts in northern hemisphere and then southern hemisphere
 - This process allows the trapping of magnetosheath plasma and creation of the boundary layer

Dayside Reconnection III

- Berchem et al., JGR, 2008
 - Used the UCLA MHD Model
 - Event studies of 8 May 2004 and 6 April 2004
 - Well observed by Cluster and Double Star TC-1
 - Examined configuration of reconnection with
 Bz and By
 - Antiparallel and component merging both occurring
 - Spread of merging region function of resistivity

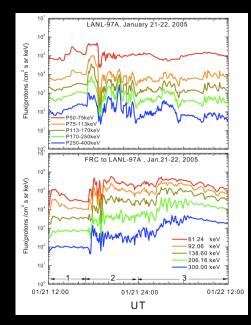




- Dorelli and Bhattacharjee, PoP, 2008
 - Used the OpenGGCM model
 - Studies the theory magnetic reconnection in 3D under northward and southward IMF
 - Concludes that MP reconnection is of two types
 - Vasyliunas plasma flow across seperatrices - northward
 - Green violation of magnetic flux conservation southward

Verification and Validation

- Daum et al., AG, 2008
 - Used the BATSRUS Model
 - Comparison of 2001-2004 Cluster data to simulation results
 - Quasi time-accurate simulations where computed for 6 day averages solar wind conditions
 - Agreement found between simulations results and observations even when density was reduced by 50%

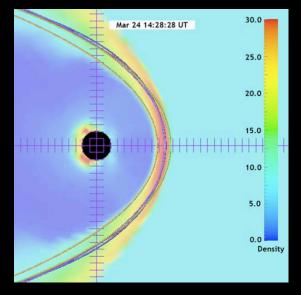

Guild et al., JGR, 2008a,b

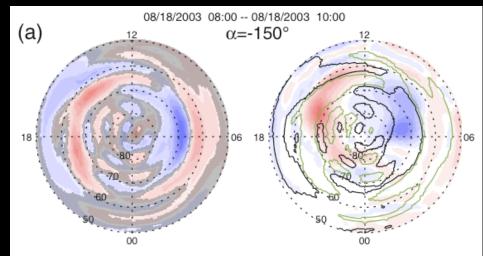

- Used the LFM model
- Comparison of 6 years of Geotail data with 2 months of LFM simulation results
 - Ensured statistical similarity between solar wind conditions
- Compared average values and flow variability for central plasma sheet
 - LFM reproduces gross features of plasma sheet, but it too dense and cool
 - Higher resolution allows for BBFs improving agreement with velocity distributions

Validation and Verification II

•

- Yu and Ridley, SW, 2008
 - Used the BATSRUS Model
 - Event study of 4 May 1998 magnetic storm
 - Compares with 150 ground magnetometer stations
 - Metric analysis yields several results
 - RMS errors vary widely for stations
 - Db/dt better capturing events, but high FAR

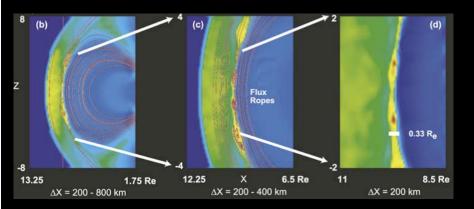


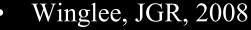


- Taktakishvili et al., SW, 2008
 - Used the BATSRUS + FRC model
 - Event studies for 21-22 Jan 2005 and 10-11 Aug 2000
 - Compared against LANL observations
 - Computes correlation based metrics
 - Works fairly well during strong driving, but maybe missing some magnetospheric dynamics during steady southward IMF conditions

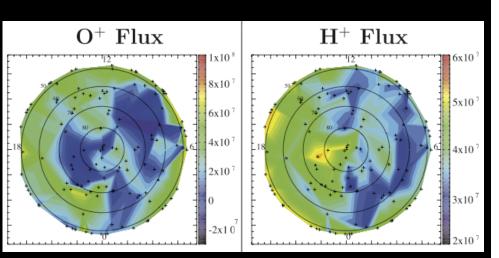
Validation and Verification III

- Korth et al., AG, 2008
 - Used the LFM Model
 - Event studies 17-19 Aug 2003 and 19-21 Mar 2001 magnetic clouds
 - Compared with Iridium and DMSP observations
 - Good morphological agreement, but simulated currents are a factor of 2 larger
 - Region 2 currents are in simulation are much weaker than observed

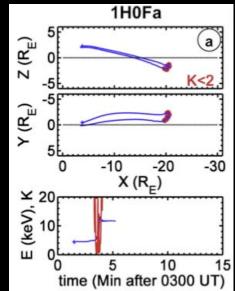




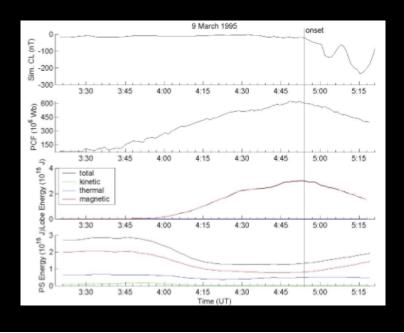
- Garcia and Hughes, JGR, 2007
 - Used the LFM model
 - Comparison of model results with empirical MP models
 - LFM MP more earthward then empirical models
 - 0.5-1.0 R_E at noon and 1.0-2.0 R_E at dusk
 - Show that deficiency is due in part to weak ring current in LFM

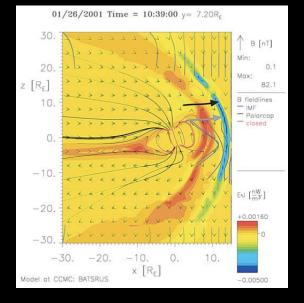

Multifluid Modeling

- Glocer et al., JGR, 2009
 - Used the SWMF
 - Adds a Polar Wind Outflow Model (PWOM)
 - Event studies for two geomagnetic storms
 - Multispecies MHD is used track the evolution and impact of O+
 - Reduces RMS error of GOES
 magnetic field comparison by 50%



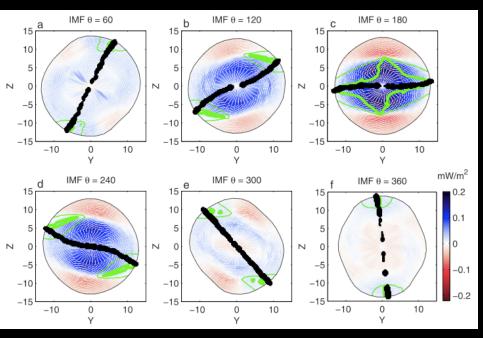
- Used the UW model
- Multifluid/Multiscale techniques are used to examine reconnection along the magnetopause
- Simulation produces FTEs with characteristics similar to observations
- Small scale processes can effect global parameters like polar cap potential by 20%


Multifluid Modeling II

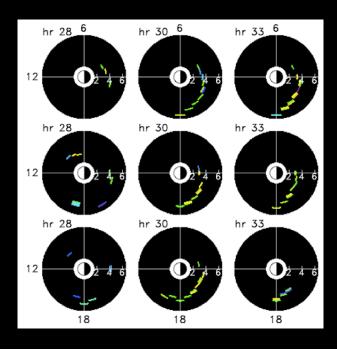

- Bosqued et al., JGR, 2009
 - Used the UCLA MHD model
 - Not truly multifluid, but has ionospheric H+
 - Event study during 14 Feb 2001
 - Compared with Cluster observations
 - Simulations show ions returning to Cluster location poleward of their source with correct energy dispersion

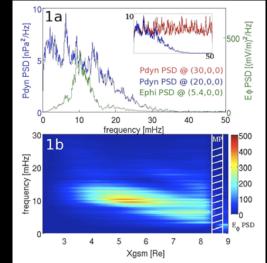
Energy Conversion

- Rosenqvist et al., GRL, 2008
 - Used the BATSRUS Model
 - Load and generator regions identified in Cluster observations are compared with simulation results
 - Model reproduces both types of regions
 - Magnitude of energy conversion agrees well
 - Model fails to capture sharp MP



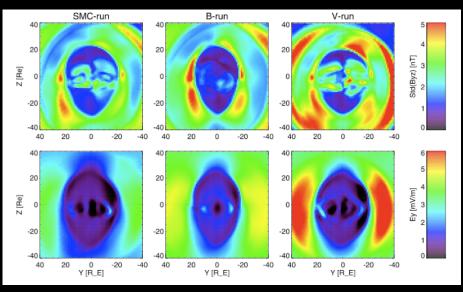
- Brogl et al., AG, 2009
 - Used the LFM model
 - Event studies for 9 Mar 1995, 10
 Dec 1996, and 27 Aug 2001
 substorms
 - Examined energy evolution during growth and expansion phases
 - Plasma sheet energy increase during growth phase from compression
 - At onset and throughout expansion phase magnetic lobe energy is transferred into plasma sheet

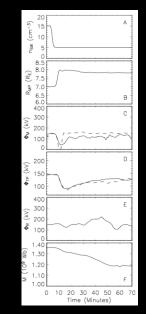

Energy Conversion II


- Laitinen et al., JGR, 2007
 - Used the GUMICS Model
 - Examined the conversion of energy at the magnetopause
 - Reconnection line location is consistent with component reconnection hypothesis
 - Efficiency of conversion depends upon IMF direction and dynamic pressure
 - Density has weak effect

Miscellaneous - Waves

- Claudepierre et al., GRL, 2009
 - Used the LFM Model
 - Use simulations with ULF waves in upstream solar wind to show these waves can drive ULF pulsations within the magnetosphere
 - Found that the magnetosphere has natural resonant frequencies that can be excited

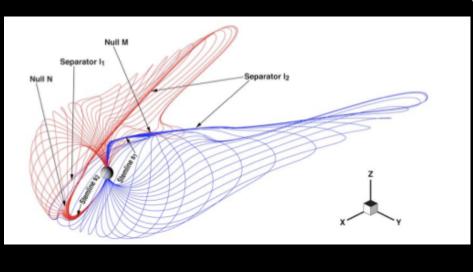


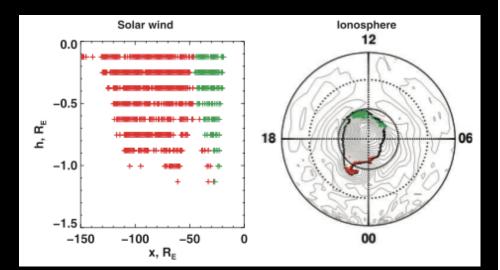

- Gamayunov et al., JGR, 2009
 - Documents development of RC and EMIC wave model
 - Also includes MI coupling, magnetospheric E field, and plasmasphere
 - Need to model plasmasphere in order to get EMIC dist correct
 - Must include potential pattern reconfiguration time

Miscellaneous - Driving

ullet

- Ober et al., JGR, 2007
 - Used the ISIM Model
 - Examined the response of \mathbf{X}_{PC} to density pulses in the solar wind
 - responds immediately to changes pulses
 - Magnitude of response depends upon time rate of change of pulse
 - Responses are transient

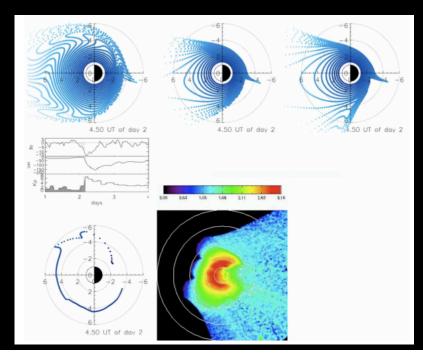


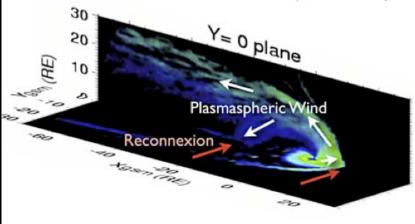


- Pulkkinen et al., GRL, 2007
 - Used the LFM Model
 - Simulated a SMC interval and then modified the solar wind conditions to independently increase V and B by 50%
 - B increase moves reconnection earthward, but leaves as SMC
 - V increase result in more activity

Miscellaneous - IMF B_Y

- Merkin and Crooker, JGR, 2008
 - Used the LFM Model
 - Used the concept of interchange reconnection to explain the transport of flux within the magnetosphere
 - Remote reconnection occurs when foot points cross open/closed boundary, but foot points remain firmly rooted closed circulation cells
 - Field line foot points jump from one side of polar cap to other




- Watanabe et al., JGR, 2007
 - Used the BATSRUS Model
 - Examined the origin of the potential asymmetry seen during IMF B_Y periods
 - For +B_Y NH duskside imes greater than SH
 - Concludes that is a result reconnection of over draped lobe field lines and closed flank side

Miscellaneous - Plasmasphere

- Moore et al., JGR, 2008
 - Used the LFM and CRCM Models
 - Ober plasmasphere model embedded within each domain
 - Idealized conditions
 - -Bz with +Bz interval
 - A plasmaspheric plume develops, but most of it is lost from the magnetosphere

Subsolar reconnexion (01:25 h)

- Pierrard et al., JGR, 2008
 - Convection E models and ideal MHD
 - E5D, VS, Weimer
 - Event studies on 28 Oct 2001 and 17 Apr 2002
 - Compare with MAGE EUV obs
 - Find that each E field model produces plumes and tails, but shape depends upon formation model examined

Conclusions

- Global scale simulations have been used to examine a wide range of scientific questions
 - Efforts continue to verify and validate the results coming from these simulations
 - Providing insight on the mechanisms leading to the saturation of the polar cap potential
 - Continuing success in modeling substorms
 - A useful tool in the study of 3D reconnection
- CCMC is broadening the utilization of global models
 - Not a model developer, so continued support to the development community is needed