Reporter Review:
Magnetospheric ULF Waves

Frederick Menk

University of Newcastle, Australia




Structure of the Review

1. ULF Wave Sources

Solar wind; boundary instabilities; nightside

2. Wave Generation and Propagation
Global modes; field line resonances; poloidal modes; other modes; Pi2

3. EMIC Waves

New theoretical developments; new observations

4. The lonospheric Boundary
Effects on ULF waves; IAR; effects of waves on ionosphere

5. Applications
Magnetospheric remote sensing; transport and acceleration of particles;
loss of energetic particles; other applications

Notation
AG=Ann. Geophys., GRL=Geophys.Res.Lett.; IGR=J.Geophys.Res.;
JASTP=J.Atmos.Solar-Terr.Phys.; PSS=Planet.Space.Sci.



Scope

Examined ~300 papers published over past ~4 years with ‘ULF
waves’ or similar in title or abstract. However, important and
favourite papers will no doubt have been missed.

This review does not cover auroral and substorm effects, waves at
other planets, and the spectrum of wave-particle interactions, which
are dealt with elsewhere.

Most work shown here is post-2008. A review up to 2010 entitled
“Magnetospheric ULF Waves: A Review”, is in The Dynamic
Magnetosphere, eds. M. Fujimoto and W. Liu, Springer, arising from
the 2009 IAGA meeting.

In past 2 years much new work has focused on analysis of multipoint
(Cluster, THEMIS) spacecraft observations, and observations and
modelling of EMIC wave generation.



1.1 Wave Sources — Solar Wind
Summary

Statistical and event studies show that periodic variations in solar wind
dynamic pressure may stimulate magnetospheric Pc5 waves and FLRs,
especially at discrete ‘magic’ frequencies (0.7, 1.4, 2.0, 4.8 mHz)
[Ghosch et al., JGR 2009; Mthembu et al., AG 2009; Viall et al., JGR
2009; Claudepierre et al., GRL 2009, JGR 2010; Stephenson & Walker,
AG 2010; Zhang et al., JGR 2010; Villante & Piersanti, JASTP 2011].

 Why would such discrete frequencies be present in the solar wind?

 How important are these as a source of ‘everyday’ Pc5 and other
ULF waves?



1.1 Wave Sources — Solar Wind
Summary (cont).

Multipoint observations show evidence of upstream waves entering and
propagating through the magnetosphere as compressional waves
[Constantinescu et al., AG 2007; Heilig et al., AG 2007; Clausen et al.,
JGR 2008].

Statistical studies confirm that Pc4-5 power is strongly related to solar
wind speed [Pahud et al., JASTP 2009; Liu et al., JGR 2010]. Multiple
regression analysis shows that several parameters play a role, including
IMF B, for Pc5 [Simms et al., JGR 2010] and solar wind density for Pc3
[De Lauretis et al., JGR 2010; Heilig et al., AG 2010].

* Is solar wind speed or pressure NV2 more important?

Do we now have robust empirical models for nowcasting Pc3 and
Pc5 activity? Can these be used in radiation belt models?



Wave Sources — Solar Wind

Viall et al. [JGR 2009]
looked for common
spectral peaks in 11
yrs of WIND and
GOES data.

They used phase
coherence and narrow
band tests on 6-hr
intervals per 3-yr
blocks. They found
discrete ‘magic’
frequencies are seen
In the magnetosphere
54% of the time they
occur in solar wind.
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Figure 5. Mean residuals of J-wear occumence distribu-
tioms of discrete fequencies fimnd in the dayside magneto-
sphere from 1996 to 2005, Vertical lines at each :'r.:qu:ru:w_-.'
indicate +1 standard deviation of the residual at that
frequency, and dots indicate statistically significant occur-
rence enhancements at the | (light gray), 2 (dark gray), and
3 (black) standand deviation thresholds, y axis tick marks
indicate 100 coumts. The horizontal line indicates a mean
residual value of zem.
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Figure 4. Mean residuals of 3-vear occumence distribu-
tioms of all statistically significant fequencies for 1995—
2005 found in the solar wind number density. Vertical lines
at each frequency indicate +1 standard deviation of the
residual at that Sequency, and dots indicate statistically
significant occwrrence enhancements at the 1 (light gray),
2 (dark grav), and 3 (black) standard deviation thresholds,
v axis tick marks indicate 100 counts. The horizontal line
indicates a mean residual value of zem.
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Wave Sources — Solar Wind

Time series and wavelet spectra of 1.9 mHz
FLR detected with the Goose Bay radar and
oscillations at WIND suggest they are
causally related [Mthembu et al., AG 2009].
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Wave Sources — Solar Wind

2.1 mHz solar wind pulsation. Start 01:31 UT
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Multi-taper spectrum analysis of 2.1 mHz
oscillations detected upstream and by
the SHARE HF radar at SANAE
[Stephenson & Walker, AG 2010]. Top:
solar wind; middle: FLR power; bottom:;
solar wind-radar cross-phase.
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Pc5 wave power (measured
here over 20 years) is
strongly related to solar
wind velocity over a range
of L and LT [Pahud et al.,
JASTP 2009].
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Wave Sources — Solar Wind
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Path diagrams showing correlation
between hourly ground level 2-7
mHz wave index Tsg and solar wind
parameters for main phases of 169
CME storms and 208 CIR storms
[Simms et al., JGR 2010]. T, and
T,ue are satellite-based ULF
variability indices. Line thickness
relates to partial regression
coefficients.

A multiple regression model
combining all these dependencies
gives

l0g,, Tgr = 0.80 for CME storms
log,5 Tgr= 0.71-0.77 for CIR storms.
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Wave Sources — Solar Wind
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1.2 Wave Sources — Boundary Instabilities

Summary

Global 3-D MHD simulations show that at constant solar wind speed
two coupled modes of KHI surface waves may be generated near
the magnetopause flanks [Claudepierre et al., JGR 2008]. Multipoint
spacecraft observations reveal standing surface waves at the
magnetopause, especially at ‘magic’ Pc5 frequencies [Plaschke et
al., GRL 2009] and highlight the role of the KHI near the flanks at
solar minimum [Liu et al., JGR 2009].

Directional discontinuities (accompanying shocks) may cause
changes in azimuthal flow direction in the solar wind which can
excite KH waves at the magnetopause [Farrugia et al., JGR 2008;
Farrugia & Gratton, JASTP 2011].

 How important are boundary instabilities as sources of ‘everyday’
ULF wave activity?

 How important are solar wind discontinuities in this regard?
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Wave Sources — Boundary Instabilities

Claudepierre et al. [JGR 2008].
Global MHD simulations in the
GSM equatorial plane for different
solar wind speeds (right); resultant
radial power profiles (bottom right);
and wavenumber profiles.
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Wave Sources — Boundary Instabilities

Plaschke et al. [GRL 2009] did a
statistical analysis of 452 THEMIS
observations of magnetopause
oscillations over 8 months. These
were at discrete frequencies, which
may be due to eigenoscillations of
MP surface mode-field line-
lonosphere system.

Magnetopause Fieldlines

Alfven Mode

Figure 3. A pressure pulse acting locally on the MP leads
to a local disturbance &j-p of the Chapman-Ferraro current
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Figure 2. Distribution of oscillation frequencies obtained

from the estimation of the MP motion by spline interpolation.

Binsize used: 02 mHz. Maxima of the distmbution are
marked with arrows.

svstem. The additional current is closed via field aligned
currents associated with an Alfvén wave propagating along
the boundary. Figure modified after Glassmeier and Heppner
[1992].
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Wave Sources — Boundary Instabilities

Pc5 wave power and
occurrence in 13
months of THEMIS
data [Liu et al., JGR
2009].

Toroidal modes near
the flanks (arrowed)
suggest KHIs are an
important source of
Pc5, compared to
solar wind pressure
variations.
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Wave Sources — Boundary Instabilities
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Figure 7. Schematic showing the TD/VS approaching the
magnetopause. The position of Cluster is indicated.

Bz Power Spectral Density {(nT2/Hz)

x 105 Cluster 3 Bz 14:09--14:26 UT December 7, 2000

3

ha
tn

M

-
on

—_

=
tn

=1

.................

_j Bz spectral
. density at Cluster.
© Note 13 mHz

. peak.

1 N T

=]

5 10

15 20 25 30 35 40 45 50
f(mHz)
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triggered global 3 mHz oscillations followed by
13 mHz KHI waves [Farrugia et al., JGR 2008].
Non-linear large eddy simulations show the
buildup of large KH vortices from the TD/VS.
Large changes of the boundary layer due to the
KHI occur on time scales comparable to the
growth rate after the action of a strong trigger
[Farrugia & Gratton, JASTP 2011].
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1.3 Wave Sources — Nightside

Summary

Observations and modelling reveal harmonically-related Pcl waves
in the PSBL [Engebretson et al., JGR 2010; Denton et al., JGR 2010].
Substorm-related current disruption events may simultaneously
produce quasi-perp ICWs with w=Q; (gyrofreq) and quasi-parallel
waves with w~Q; [Yoon et al., JGR 2009; Mok et al., JGR 2010].

Cusp-latitude ground observations suggest that nighttime Pc3-4
waves have an upstream origin, perhaps via the tail lobes [Francia et
al., AG 2009; De Lauretis et al., JGR 2010; Ponomarenko et al., GRL
2010].

« How important is the PSBL as a source of ICWs?

* There are a lot of ‘regular’ non-Pi2 low m waves on the nightside.
Where do they come from?
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1.3 Wave Sources — Nightside

Cluster observations in the PSBL show harmonically-related Pc1-2 waves with
f=Q., [Engebretson et al., JGR 2010].
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1.3 Wave Sources — Nightside

Pec3 Pecd 2006/05/15
40 40 . —mal. |

4 8 12 16 20 4 & 12 16 20
MLT (hours) MLT (hours)

Diurnal % distribution of polarized
Pc3, 4 power at a cusp station
shows significant nightside activity
[Francia et al., AG 2009].
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Similarity between dynamic spectra
of Pc3 seen on nightside by HF
radar (top), at nearby
magnetometer (middle), and by
dayside cusp magnetometer
(bottom) suggests common source
In upstream waves (circles)
[Ponomarenko et al.,, GRL 2010].




2.1 Wave Generation & Propagation —
Global Modes

Summary

Negative and positive solar wind impulses excite mHz waves [Zhang et
al, JGR 2010; Barve et al., AG 2011] at discrete frequencies. Waves at
these frequencies may occur throughout the magnetosphere [Liou et
al., GRL 2008; Claudepierre et al., GRL 2009, Clausen & Yeoman, AG
2009] and plasmasphere [Ndiitwani & Sutcliffe, AG 2009].

Multipoint observations provide new evidence of plasmasphere
eigenmodes (virtual resonances) [Turkaken et al., JGR 2008;
Takahashi et al., JGR 2009, 2010]. However, Pc5 power is significantly
lower in the plasmasphere than the trough [Hartinger et al., GRL 2010].

e Are global modes restricted to extreme conditions?
« How common are plasmaspheric resonances?



Wave Generatlon & Propagation — Global Modes
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excite poloidal and
toroidal waves, but
these are weaker for
negative events. The
oscillations are
stronger near noon
than dawn and dusk.
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Wave Generation & Propagation — Global Modes

a) A conceptually simple model of the solar wind-
@ magnetosphere interaction (left) allows
] characterisation of magnetopause oscillations due to
‘ *@ solar wind density changes [Bgrve et al., AG 2011].
\ 4 2.0F ' '
\\ 3 1+5:*
2 -E-E; 1.0;
1 osf L
D 0ol Bow shock
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Fig. 11. Magnetic field variations, comesponding to Fig. 6. The
present case has a tilt of 7 /6 for the magnetic dipole axis.
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. . x/Re . 0 0 .
Magnetic field and density 15% and 20% changes in solar
wind density.

for the tilted dipole model.
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Occurrence of ‘magic’ frequencies in
Cluster magnetic field data (132 orbits),
using different magnetic field models.
Lower 3 panels relate to different
averaging lengths.

Frequencies are not consistent across 3
all components, maybe because the &
spacecratft is inside the FLR turning
point [Clausen and Yeoman, AG 2009]. 3
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Wave Generation & Propagatlon — Global I\/Iodes
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2.2 Wave Generation & Propagation — FLRs

Summary

Ground-satellite observations confirm that upstream broadband
waves propagate through the magnetosphere to stimulate FLRs at
high latitudes [Clausen et al., AG 2009] and at low latitudes [Ndiitwani
and Sutcliffe, AG 2010]. THEMIS survey data show Pc4 are dominant
~5 -6 Rg and Pc5 ~7 — 9 R, suggesting FLRs are an important
component of Pc4 activity [Liu et al., JGR 2009].

Combined in situ and ground measurements show that Pc3 waves
just inside the cusp have transverse scale size of ~0.14 R and are
shear mode Alfven waves guided along closed field lines to the

ground with high coherency and 90° ionospheric rotation [Liu et al.,
JGR 2008, 2009]. The waves occurred globally across the ground.

Simulations show that a continuous spectrum of FLRs results from
broadband pressure fluctuations [Claudepierre et al., JGR 2010].



Wave Generation & Propagation — FLRs

Summary (cont.)

Improved theoretical treatments of FLRs include effects of azimuthal
plasma motion in the magnetosphere [Kozlov and Leonovich, JGR
2008], and non-axisymmetric magnetic field topologies that modify
wave polarization properties [Kabin et al., AG 2007].

A compressed dipole treatment incorporating day/night asymmetry
[Degeling et al., JGR 2010] shows that spatial properties of FLRs are
determined by the accessibility of MHD fast mode waves to different
locations of the magnetosphere. This is demonstrated observationally
by Degeling et al and Sarris et al. [JGR 2009; GRL 2009].

 How does such a more realistic consideration of FLR source
location affect ideas on radiation belt electron transport?
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Wave Generation & Propagation — FLRs

Comparison of Pc3 on the ground at
L=1.8 and wave properties seen by

CHAMP as it passed nearby [Ndiitwani

& Sutcliffe, AG 2010]. Note L-
dependent toroidal mode frequency.
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Wave Generation &

Satellite-ground coherency analysis of
Pc3 waves propagating on the last
closed field lines from the exterior cusp
to the ground confirms 90° rotation and
gives a transverse scale size ~0.14 R¢
[Liu et al., JGR 2009].
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Wave Generation & Propagation — FLRs

Global 3D MHD simulation of FLR power excited by monochromatic 10 mHz solar
wind pressure variations [Claudepierre et al., JGR 2010]. The simulations also
show that a contlnuum of fluctuations drives a spectrum of toroidal mode FLRs
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Wave Generation & Propagation — FLRs

Right and below: Compressed
dipole geometry distorts

period and polarization of
standing shear Alfven waves
with MLT [Kabin et al., AG
2007].
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Wave Generation & Propagation — FLRs

FLR E, (“toroidal” mode) vt e et oo e "
and Eg (“fast” mode) - : '3
amplitude and phase
(columns) given a 5 mHz
driver at 12, 15, 18 and
21 MLT (rows)[Degeling
et al., JGR 2010].

This suggests that
penetration of energy
from a source at the
magnetopause to lower
L shells requires the
source to be close to
local noon —i.e. not a
KHI.
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2.3 Wave Generation & Propagation —
Poloidal Modes

Summary

Multipoint spacecraft observations are providing new information on
poloidal modes. During recovery phase these waves may persist in the
outer magnetosphere for days and exhibit polarization rotation to toroidal
waves [Sarris et al., JGR 2009a, b]. They also may occur at the
plasmapause [Schéafer et al., AG 2008].

Poloidal Alfven modes are sensitive to finite plasma pressure and field
curvature. These affect the field-aligned wave structure, resulting in an
opaque region forming near the equatorial plane where partial reflection
of the waves occurs [Mager et al., AG 2009].

« How do these results affect models of particle energization by
poloidal modes?



Wave Generation & Propagation — Poloidal Modes

5-day GOES-8 observations of a Pc5 Change in polarization from poloidal to
event in storm recovery phase [Sarris et  toroidal [Sarris et al., JGR, 2009Db].
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Wave Generation & Propagation — POI0|dal Modes

Cluster measurement of 2"d harmonic
standing poloidal mode wave with m=155 just
outside the plasmapause [Schéafer et al., AG
2008]. The two wavepackets show evidence
of evolution from purely toroidal to mixed _
toroidal and poloidal modes. =r
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(dashed) mode eigenfrequencies. Vertical line
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the plasmapause at L—=323 RE 1334



Wave Generation & Propagation — Poloidal Modes

Formation of opaque

regions for poloidal modes
in a finite pressure plasma
and dipole field may cause
hemispheric decoupling of

H 1 Fig.2. C showi ible locafi T ions f
field lines [Mager et al., AG i im i =

2009].
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:_If 0 Iu[m] :I;FIII
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Fig. 1. Sketch demonstrating the dependence of H (top) and K2
(bottom) on [ and showing probable locations of the transparent
and opacue regions. Here /g are the turning points for a harmonic
with eigenfrequency e, +{; are the intersection points of a field
line with the ionosphere. The shaded areas I and IT correspond to
the transparent regions.
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Fig. 7. The field-aligned structure of the fundamental harmonic at
L=06 shell in plasma with =0 and g 0. Here & 1s the “potential”.
E and b are the wave electric and magnetic fields, accordingly, and
# 1s the geomagnetic latitude.



2.4 Wave Generation & Propagation —
Other Modes

Summary

Narrow-band Pc3,4 waves occur on open field lines but are not just a
poleward extension of mid-latitude activity [Pilipenko et al., JASTP 2008].
The pulsations may be due to the interaction of propagating
magnetosonic and Alfven waves such that when the phases match
energy is converted into the Alfven wave [Pilipenko et al., JGR 2008].

Cluster and ground observations for large L show coherent, low m, low
frequency waves that propagate sunward [Santarelli et al., AG 2007,
Eriksson et al., AG 2008]. THEMIS has found many compressional Pc5
waves which propagate sunward and outward and are likely caused by
the drift mirror instability [Constantinescu et al., JGR 2009].

» Is the source of the sunward propagating waves in the tail?
« How common are such features?



Wave Generation & Propagation — Other Modes

Yase Rp)

Locations and phase velocities of
compressional Pc5 was recorded at
THEMIS [Constantinescu et al., JGR
2009]. Velocities are ~30 km/s and
the waves occur beyond 8 Rc.
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Cluster observations of 1-2 mHz m=3
toroidal waves at L=16 post midnight
[Eriksson et al., AG 2008]. Propagation
and Poynting flux are sunward and
frequency changes with B.

Left: Xz orbit projection.
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spectrum; bottom right:
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2.5 Wave Generation & Propagation — Pi2

Summary

Ground-based statistical studies have characterized the spatial
distribution and evolution of Pil and Pi2 power and polarization with
respect to substorm onset times and locations [Murphy et al., JGR
2011; Rae, JGR 2011]. There is little difference between wave
behaviour across the Pil and Pi2 bands, and the wave spectrum near
the auroral onset is a power law of slope -3.7.

Multipoint observations now provide precise information on the timing
of periodic ion injections, Pi2 in space and on the ground, and
modulated auroral luminosity. While Pi2 waveforms and BBFs seem
related, a timing case study suggests the BBFs do not directly drive
the Pi2 [Murphy et al., AG 2011].

The timing of Pi2 across high and low latitudes shows MLT dependent
travel times to high compared to low latitudes for the H (but not D)
component [Uozumi et al., JGR 2009].



2.5 Wave Generation & Propagation — Pi2

Summary (cont.)

Evidence that low latitude Pi2 are due to plasmaspheric cavity modes
grows. Itincludes: THEMIS observations of radial standing fast
mode Pi2 waves on the dawn and night (but not day) sides [Kim et
al., JGR 2010]; observations of night (but not daytime) Pi2 with cavity
mode properties in the ionosphere and on the ground [Sutcliffe &
Lahr, JGR 2010]; statistical results that Pi2 period is negatively
correlated with Y Kp and positively correlated with mass density
[Nose, JGR 2010]; and comparisons of wave fields and phases in the
lonosphere and on the ground [lkeda et al., JGR 2010].

* The origin of low latitude Pi2 on the night side seems clear. How
about on the dayside?



Wave Generation & Propagation — Pi2
Schematic Pi2 model by Keiling et al. [GRL 2008] and Murphy et al. [AG 2011].
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Fig. 8. An illustration depicting a potential sequence of events subsequent to reconnection at the NENL. Reconnection at the NENL results
in the release of a BBE. and the production of an earthward propagating fast-mode which couples to the background field generating Pi2
pulsations observed on the ground. The inset panels (a}{c) show three possible time lines, for tg — 11 — ry of the relative times msmiﬂg
a Pi2 pulsation on the ground and the in-situ observation of a BEF in the CPS. See text for details.



Wave Generation & Propagation — Pi2
Observed time delays and resultant Pi2 model [Uozumi et al., JGR 2009].

(a)

MLT Dependence of delay time
AT egrr Low H vs High H

100 . — A
-=--= HE ”:;I}-’E ;UP;{;Q”: - lonosphere
80| ~—op Ay Eqy
.I"._\-l . N ’ :r —_— l-'\..'
60| " . - gj_ ' .‘BT‘WAI V.
'-l&\ »| - . == OV, :, y ._': I_
E‘_ 20 " .; \“\.\ i :-_f ':: 'E" ) f - -'l 6 ¢ ' / VIV\ Giround
@ 0 —*1—¥'1&§b = .':5_._;.-;. %% . oj_ A
<] -20 -‘-I P . - w w I] . 6]15" .\ ’r" }{'
7 . Y : Wavefront o
-4 T L e T Magnetic oo el vk '
° T T bl - FastWave Pgth 1 = source—ground = T1
-60 ——Kp=1 » OsKp=i |___ = = 3‘95 Plane . .
80 [t s R A e meian || © 1 -0 . ..Path.2 = source — field line
Ko = 3 K O  2haverage < =075 ) . . _
A00 = e Delay-Time crossing point — ground = T2
MLT ATsa(MLT) @
(b) MLT Dependence of delay time
100 AT corr Low H vs High D
80 1
60
40 ) T . -
w 20, o N W
Ié 0 ;!1!:.l£-—$ﬂ_hﬁd:I - ‘Hi;'f?iﬂi!”' = @(}g. ol '
:'3 _20 - . S "--C‘..'.'...'Iliﬁa.flr| Wave [ '.'.OII.
» . . — o
~40 . Plasmapause Pa;};:é"ll--.---uq--u::?;r.. s
D i ¥
60|+ oskpst " Wavefront of s
o lcKp=2 s =035 . 5
80| |+ 2ckoss T Phrnmedan) - « I =0.85 Fast Wave Path-1: S— G Pi 2 Source Region
3<Kp average 4 =0.75
P 2. O (> (7 (10Re, 22,5MLT)
g 20 22 o 2 4 6 Path-2: §—> C—> G p41

MLT



Power density

Coherence

Cross phase (deg)

Wave Generation & Propagation — Pi2

Spectral properties between THEMIS (L~2.6) poloidal components and ground
H (L=1.35)[Kim et al., JGR 2010], and CHAMP (solid lines), HER (dashed;
L=1.8), THY (dotted; L=1.8)[Sutcliffe & Lihr, JGR 2010].
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Wave Generation & Propagation — Pi2

Sutcliffe & Luhr did not see
evidence for dayside Pi2 at
CHAMP, and supported the
Kikuchi & Araki [JASTP 1979]
model. Electric fields due to
FACs penetrate directly to low
latitudes in an atmospheric
waveguide. Toroidal currents
flowing between the ionosphere
and ground generate local
magnetic fields.
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3.1 EMIC Waves — Modelling

Summary
Progress continues on modelling EMIC wave growth and propagation.

McCollough et al. [GRL 2009, JGR 2010] used a global 3-D MHD
simulation to determine the temperature anisotropies and hot particle
densities affecting the convective EMICW growth rate, with cold
plasma densities derived from ground cross-phase measurements.

Ray tracing simulations of EMIC growth with bi- and non-Maxwellian
lon distributions show strong wave gain near the plasmapause and at
and within plumes [Chen et al., JGR 2009, 2010].

2-D hybrid simulations for a single and multi-ion plasmas in a dipole
field [Hu & Denton, JGR 2009, 2010] show waves are generated near
the equator and change from LH to linear as they propagate to the
lonosphere, encountering resonances and stop bands.



EMIC Waves — Modelling

Summary (cont.)

Hybrid simulations using particle-in-cell methods in a uniform magnetic
field describe the long-term nonlinear evolution of EMICWSs, which may
persist for some hours [Omidi et al., JIGR 2010], and the scattering of
hot and cool protons [Bortnik et al., JGR 2010].

Omura et al. [JGR 2010] developed a nonlinear wavegrowth theory for
bursty LH EMIC triggered chorus emissions which emerge from nearly
constant frequency EMICWs, describing the nonlinear interaction of
protons with the seed EMICW and the time variation of the wave
spectrum. Tsintsadze et al. [JGR 2010] described nonlinear excitation
of magnetosonic waves through amplitude modulation of EMICWs.

Klimushkin et al. [JASTP 2010] showed that in a multi-ion plasma an
equatorial resonator has closely spaced eigenfrequencies for quasi-perp
propagation, and the harmonics may lead to pearl-like beating.



14:45 UT

15:00 UT

EMIC Waves — Modelling

Cold H* density based on ground
magnetometer cross-phase
measurements (left) and GCPM plasma
density distribution [McCollough et al.,
JGR 2010].

Resultant EMIC growth rates.

Temp anisotropy for warm H* in
noon-midnight plane. Off equatorial
field aligned nature suggests
importance of Shabansky orbits.
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EMIC Waves — Modelling

Cold plasma density distribution and resultant EMIC wave gain for a bi-
Maxwellian hot proton distribution [Chen et al., JGR 2009]. Note waves in
He* band in trough and in plume density structures. A non-uniform ring
current density profile and different plume densities were also evaluated.

Gain, dB

—21
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EMIC Waves — Modelling

Gain,dB
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Global simulation of EMIC wave excitation
during 21 April 2001 storm, using RCM/RAM
simulation of ring current ion PSD and
HOTRAY ray tracing code [Chen et al., JGR
2010]. He* band waves are preferentially
excited inside and at the eastern edge of the
plume, in the recovery phase, and may
resonate with 23 MeV electrons.
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Figure 8. The region of EMIC wave excitation (with equatorial gain =30 dB) in the He™ band is shown
by the colored area for (a) r=40 h and (b) r =48 h. Color coding represents the minimum resonant energy
of electron mteracting with the excited EMIC waves. The equatorial density is also shown in gray scale on
the background.
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EMIC Waves — Modelling

Run 1 Run 2 Run 3 Run 3a Kun 4
| ’ fi = 2
-~ -
: i T =
\ A\ = =
a b ¥ -
FgE = )
i
r . g h ;

1 P(q)

2-D hybrid simulations showing
evolution of wave power in g
(field-aligned), r (across flux
tube) directions. O* density
Increases between runs.
Colour represents ellipticity;
dotted and dashed lines
indicate bi-ion and cyclotron
frequencies [Hu & Denton,
JGR 2010].

Reflection occurs at the He*-
O* bi-ion frequency when O*
density is high. Away from the
source region the Poynting
vector is mostly away from the
equator.
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Figure 1. Trajectory of a proton test particle shown as the blue line, with superimposed local magnetic
field vectors (red arrows) and local electric field vectors (black arrows), for (a) a uniform B field only and
(b) a uniform B field, with simulated EMIC wavefield. The coordinate system is shown in Figure la,
where By is aligned with the x axis.
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Time evolution of perp (top) and
parallel cold proton energies,
which grow at the expense of the
hot protons [Omidi et al., JGR
2010]. The cool particles
experience strong phase bunching
and energy scatter in v,
consistent with observations of
cool heavy ion heating in space
[Bortnik et al., JGR 2010].
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Figure 5. Trajectories of 12 proton test particles color-coded according to their initial Lafgl}"s:(r)phase,
shown in (a) configuration space and (b) velocity space, in the same format as Figure 2. )



3.2 EMIC Waves — Observations

Summary

Multipoint ground observations show seasonal, diurnal and frequency-
dependent Pcl polarization properties consistent with propagation
from higher latitude sources [Nomura et al., JGR 2011], such as
localised L shells near the plasmapause [Engebretson et al., JGR
2008; Usanova et al., GRL 2008, JGR 2010]. First in situ observations
reported of LH dispersive rising tone chorus type EMICWs triggered
during Pc1l activity [Pickett et al., GRL 2010].

In the polar regions, there is no Pc1-2 signature of the cusp, but
bandlimited Pc1-2 waves originate from the plasma mantle, at the
poleward edge of the cusp [Engebretson et al., JIGR 2009].

Satellite surveys of EMICW occurrence [Halford et al., JGR 2010;
Fraser et al., JGR 2010] show occurrence mostly in the main phase
and near L=5.8 and 15 MLT.



3.2 EMIC Waves — Observations

Summary (cont.)

A survey using ground and GEO data found peak Pcl activity before
and in storm recovery phase, and only weakly related to plumes
[Posch et al., JGR 2010], pointing to the role of compressions.

However, in situ observations confirm EMICW association with plumes
[Morley et al., JGR 2009; Yuan et al., GRL 2010]. Morley et al also
showed an association with 6 — 30 keV ion precipitation. Usanova et
al. [JGR 2010] noted >30 keV ion precipitation with EMICWSs.

In a 2 year morphological study, Yahnin et al. [JGR 2009] showed that
proton aurora are likely connected with IPDP EMIC waves.

 How important are plumes as a source of EMICWSs?
 How important are compressions as a trigger of EMICWs?



(a)

(b)

{c)

(d)

EMIC Waves — Observations

Below: EMICWSs near the
plasmapause associated with
solar wind density enhancements

but not Pc5 FLRs [Usanova et al.,

JGR 20101.
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EMIC Waves — Observations

Ground Pcl occurrence and plumes for 133 storms relative to beginning of
storm onset [Posch et al., JGR 2010]. Time resolution is 1 day or 2 hours.
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EMIC Waves — Observations

EMICW occurrence with a plume: at Cluster [Yuan et al., GRL 2010] and at
GOES 9, DMSP and on the ground [Morley et al., JGR 2009].
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4.1 The lonospheric Boundary — Effects on waves

Summary

MHD models with realistic ionospheric boundaries describe the effects
of ionospheric conductivity on FLRs [Waters and Sciffer, JGR 2008],
the mix (shear Alfvenic/fast mode) of wave modes incident on the
lonosphere [Borderick et al., AG 2010], the ratio of equatorial electric
field to ground magnetic field [Sciffer and Waters, JGR 2011], and FLR-
Induced phase changes in radio signals [Waters and Cox, AG 2009].

Observations and modelling confirm the existence of quarter-mode
FLRs near the dawn terminator, mostly in winter or summer in the US
sector [Obana et al., JGR 2009]. These arise due to the asymmetry in
lonospheric conductivity at conjugate points.

lonospheric heaters are being used to excite ULF waves on local
magnetic field lines [Badman et al., AG 2009; Streltsov & Pedersen,
GRL 2010; Kuo et al., GRL 2010].



The lonospheric Boundary — Effects on ULF Waves

Altitude (km)

The F region vertical electron
velocity V, due to a downgoing 3
mHz wave with varying mode
mix [Borderick et al., AG 2010].
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The lonospheric Boundary — Effects on ULF Waves

Modelled variation in differential phase
for a 70 MHz signal due to changes in
TEC from a 50 mHz ULF wave with
80% shear Alfven mode at 1000 km
altitude [Waters & Cox, AG 2009]

k, (107%n™")

Fig. 4. The differential phases for noon and summer at [=1.6
(South Hemusphere) for a 70MHz signal due to changes in TEC
from a 30mHz ULF wave as a function of the ULF wave spatial
scale size. The i1onosphere and neutral atmosphere parameters are
the same as those used for Fig. 1. The upper boundary wave mode
mix 15 80% shear Alfvén mode.
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The lonospheric Boundary — Effects on ULF Waves
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The lonospheric Boundary — Effects on ULF Waves

Cluster observation of 1.67
mHz FLRs stimulated by

lonospheric heating

[Badman et al., AG 2009].
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4.2 The lonospheric Boundary — IAR

Summary

Numerical modelling has mapped the IAR spectral resonance
structure (harmonic modulation in spectral density) in the Pcl range
for realistic ionosphere and magnetic inclination [Bosinger et al., AG
2009]. The IAR may be excited by worldwide lightning activity
[Shalimov & Bo6singer, JGR 2008].

Diurnal variations in IAR spectral resonance structure are disrupted by
substorm precipitation effects [Parent et al., JGR 2010]. Hence F
region density changes may dominate IAR variations.

Pcl pulsations seen from -62° to -87° latitude and on CHAMP
propagate poleward in the ionospheric duct at ~90 km/s and with ~8 —
20 dB/1000 km attenuation [Kim et al., JGR 2010].



The lonospheric Boundary — IAR

Diurnal variation in I1AR IAR Signatures GKN 28 Feb 2006
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The lonospheric Boundary — Wave Effects

Summary

ULF wave fields drive perturbations in the ionosphere. These are
seen with radio sounders for FLRs at low [Menk et al., GRL 2007;
Dyrud et al., GRL 2008] and high latitudes [Mthembu et al., AG 2009;
Borderick et al., AG 2010], and for Pi2 [GjerloevV et al., GRL 2007,
lkeda et al., JGR 2010]. Models can explain the observations.

Many radar studies suggest that high-m waves are due to drift or drift-
bounce resonance with azimuthally drifting protons [e.g. Baddeley et
al., AG 2005a, b]. However, substorm injected electron clouds may
produce intermediate-m poloidal waves with equatorward phase
propagation [Mager et al., JASTP 2009; Yeoman et al, AG 2010].

Electric field oscillations associated with pulsation auroras are also
seen with radars [Cosgrove et al., AG 2010], and ULF waves may
modulate GPS TEC measurements [Skone, Radio Sci., 2009].



The lonospheric Boundary — Wave Effects

Field of view and velocity variations for Hankasalmi radar of substorm associated
intermediate-m waves with equatorward phase propagation [Yeoman et al., AG 2010].
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The lonospheric Boundary — Wave Effects

Signatures of kilometer scale waves in the
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5.1 Applications — Remote Sensing

Summary

The use of ground ULF wave observations to monitor field line
eigenefrequencies and hence magnetospheric density variations
(“magnetoseismology”) is well established and includes plasmaspheric
dynamics [Kale et al., JGR 2009], plasmaspheric plumes and biteouts
[Takahashi et al., JGR 2008], and refilling [Dent et al., JGR 2006; Obana
et al.,, JGR 2010a]. Comparison of mass with electron densities allows
the plasma composition to be determined [Grew et al. GRL 2007].

Ground cross-phase determinations of plasmapause location generally
agree with EUV He* determinations at solar maximum (IMAGE) and
minimum (Kaguya) within 0.4 R¢ [Obana et al., JGR 2010Db].

Surveys using FLR data from low latitude ground stations [Vellante et al.,
JGR 2007] and geostationary orbit [Takahashi et al., JGR 2010; Denton
et al,. JGR 2011] have provided empirical models of the solar cycle
variation in FLR frequency and bulk ion mass loading.



Applications — Remote Sensing
Summary (cont)

The field-aligned density distribution may be enhanced in the afternoon
sector at GEO [Takahashi and Denton, JGR 2007] and ~4.8 Rg [Denton
et al., AG 2009] but power law models usually suffice for FLR density
determinations [Maeda et al., ASR 2008].

Radial field line motions due to poloidal mode ULF waves cause Doppler
shifts in VLF signals [Menk et al., JGR 2006] and modulate kHz range
nonthermal continuum radiation near the plasmpause [Grimald et al.,
JGR 2009].

» Are plasma plumes readily detected by ground-based methods, and
do they contain a significant heavy ion population?

* Further calibration studies are required to compare ground-based
density inferences with in situ measurements and improve the
precision of composition estimates.

 How does plasma composition vary with magnetic activity and L?



Appllcatlons — Remote Sensing
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Applications — Remote Sensing

Hourly post-storm mass density refilling
rates [Obana et al., JGR 2010].
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5.2 Applications — Transport of Energetic Particles

Summary

Trapped electrons may be energized by drift resonance interactions
with low-m Pc5 waves [Degeling et al., JGR 2008; Huang et al., JGR
2010a,b] e.g. with compressions [Ukhorskiy and Sitnov, JASTP 2008;
Zong et al., 2009; Loto’aniu et al., JGR 2010]. Large amplitude
Internally generated high-m storm-time Pc5 may also be important
[Ozeke and Mann, JGR 2008].

Poloidal mode high-m standing Pc5 waves may undergo bounce-
resonance interaction with energetic electrons and radiation belt O*
lons [Yang et al., JGR 2010,2011a,b]. EMICWs may energize He*
lons [Zhang et al., JGR 2010].

 What are the relative contributions to particle energization of
broadband low m Pc5 waves, adiabatic transport by compressional
waves, high-m waves in the ring current, and EMICWs?



Frequency [mHz]

Frequency [mHz]

Applications — Transport of Energetic Particles
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5.3 Applications — Loss of Energetic Particles

Summary

Many studies confirm that EMICWs may cause pitch angle scattering
and precipitation into the atmosphere of energetic electrons. These
iInclude observations of wave proxies [Sandanger et al., JASTP 2009;
Blum et al., JGR 2009] and event analysis [Ukhorskiy et al., GRL
2010], and numerical simulations [Liu et al., JGR 2010; Su et al.,
JASTP 2011; Xiao et al., JASTP 2011].

A new global network of VLF receivers detects sub-ionospheric
signatures of relativistic electron precipitation [Clilverd et al., Space
Weather 2009]. This has provided evidence of relativistic precipitation
over 3<L<7 for 10 — 15 days after recurrent storms associated with
enhanced power in the Pc1-2 range but not in the Pc4-5 range
[Clilverd et al., JGR 2010]. Such precipitation had earlier been
connected with IPDP [Rodger et al., GRL 2008].



Applications — Loss of Energetic Parcticles

Storm epoch comparison of times an EMICW growth parameter exceeds the
instability threshold, for over 300 storms in which post-storm relativistic electron
fluxes were or were not seen in the radiation belts [Blum et al., JGR 2009].
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Applications — Loss of Energetic Parcticles

Subionospheric precipitation driven by IPDP EMICWs [Rodger et al., GRL 2008].
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5.4 Applications — Other

Summary

Techniques for identifing ULF wave properties include a beamformer
FLR detector [Plaschke et al., AG 2009]; Wigner-Ville distributions [Chi
& Russell, JGR 2008]; maximum entropy analysis [Ndiitwani &
Sutcliffe, 2009]; Hilbert-Huang and S transforms [Kataoka et al., JGR
2009]; and the Meyer discrete wavelet transform [Milling et al., GRL
2008; Murphy et al., JGR 2009; Rae et al., JGR 2009a,b, JGR 2010].
The latter two are useful for decomposing and timing ULF waveforms
at substorm onset. Wave-based substorm timing has been extended
Into space [Walsh et al., JGR 2010].

Debate continues on whether ULF waves can precede seismic events
[Campbell, JGR 2009; Thomas et al., GRL 2009; Masci, JGR 2010].

Consistent amplitude and phase relationships are observed between
ULF signals and induced currents in long oil and gas pipelines at low
latitudes [Marshall et al., Space Weather 2010].



Applications — New Techniques

Example of Hilbert-Huang transform based empirical mode decomposition of
substorm waveforms [Kataoka et al., JGR 2009].
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Applications — New Techniques

Wavelet-based substorm detector (AWESOME) for 1 October 2005 substorm seen
with CARISMA array [Walsh et al., JGR 2010]. Contours represent time relative to
auroral onset seen at GILL at 0416:00 (left) and ISLL at 0422:24 (right) overplotted
onto IMAGE FUV data. Bottom panel is wavelet spectrogram from GILL. Wave
onset in the Pi2 band is at 0416:00 UT.

IrMAGE-WIC 20051001 0419:15-0421:21 IMAGE-WIL 20031001 0421:21-0423:35

4933.223

2784.530
. £
| 564,981 3
LJ
881.178
500,000
T1.5-6.0 {j=10) 1245
T:3.0-12.0 (j=9) 112s
T6.0-24.0 (j=8) 432s
T 2.0-48.0 (=7 4323
T:24.0-96,0 (j=6) 2245
T:4&,0-192.0 (j=5) Os
T:96.0-384.0 (=2 Os
T:192.0-768.0 (j=3) 2568
T:384.0-1536.0 (j=2 S12s
04:12:00 0O4:14:08 04:16:16 O04:18:24 04:20:32 04:22:40 04:24:48 04:26:56 04:29:04 p77

uT



The End (for now)
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