Estimation of magnetic field mapping accuracy using the pulsating aurora-chorus connection

Toshi Nishimura (Given by Jacob Bortnik)

Collaborators

J. Bortnik, W. Li, R. M. Thorne, L. R. Lyons, V. Angelopoulos, S. B. Mende, J. Bonnell, O. Le Contel, C. Cully, R. Ergun and U. Auster

Lower-band chorus as a driver of pulsating aurora

The driver of the pulsating aurora has been extensively discussed:

•Chorus [Davidson, 1990] •ECH [Liang et al., 2010] •E|| [Sato et al., 2004]

Simultaneous THEMIS spacecraft and imager observations showed almost one-to-one correlation between chorus and aurora intensities over a localized area of the sky.

The localized high correlation can be used to highlight the real magnetic footprint of the spacecraft, independently from magnetic field models.

[Nishimura et al., Science, 2010]

Questions

- How common is the chorus-pulsating aurora correlation?
- What is the typical error of the Tsyganenko magnetic field models?
 - Exciting opportunity to determine the accuracy of the widelyused models, which intrinsically have statistical errors
 - Magnetic activity dependence of the footprint location

Multi-event study of pulsating aurora-chorus correlation

Event selection criteria

Spacecraft

- Particle burst-mode observations
- Intense (>10 pT) chorus
- no strong ECH (To eliminate strong diffuse aurora events)

ASI

- T01 footprint within a field-of-view
- Less light contamination or clouds
- If exists, PA should be strong enough to determine the patch size

13 events during 2007-2010

 High correlation region over a single auroral patch, changing its shape Likely to highlight the real spacecraft footprint Located slightly to the east of the model footprint

- High correlation between chorus and pulsating aurora
- High correlation region over a single auroral patch, changing its shape Likely to highlight the real spacecraft footprint Located slightly poleward of the model footprint

Footprint location compared to multiple models

• The T02 magnetic field model (yellow) tends to be closer to the chorus-PA correlation location (error ~ 100 km in the ionosphere).

Magnetic activity dependence

- Quiet time footprint: Closer to IGRF than Tsyganenko
- Disturbed time footprint: Closer to or slightly equatorward of Tsyganenko

Comparison to in-situ magnetic field

The in-situ magnetic field measurements support the tendency of the chorus-PA mapping result.

The chorus-PA mapping is likely to highlight a real magnetic footprint of the spacecraft.

Summary

Magnetic field mapping using chorus-PA correlation using 13 events during 2007-2010 THEMIS spacecraft-ASI conjunctions.

• A multiple event analysis demonstrated that the high correlation between chorus and PA commonly occurs.

• Taking advantage of this method independent of model fields, a typical error of Tsyganenko model was estimated.

~100 km in the ionosphere \rightarrow ~2000 km at the equator

•Magnetic activity dependence is found.

•Quiet time footprint: Closer to IGRF than Tsyganenko

•Disturbed time footprint: Closer to or slightly equatorward of Tsyganenko

This tendency is consistent with the in-situ magnetic field inclination.

END

List of lower-band chorus—ASI conjunction events satisfying the selection criteria

							Pulsating
YYYYMMDD	ннмм-ннмм	lower band	upper band	weak ECH	s/c	ASI site	aurora
20081109	0624-0632	yes	yes	?	e	nrsq	yes
20081207	0555-0558	yes	yes	yes	e	nrsq	yes
20090215	0133-0142	yes	no	yes	е	nrsq	yes
20100106	0529-0538	yes	yes	yes	d	nrsq	yes
20100106	0635-0645	yes	yes	yes	d	nrsq	yes
20100106	0605-0625	yes	yes	yes	е	nrsq	yes
20100111	0507-0516	yes	yes	no	e	nrsq	yes
20100114	0505-0515	yes	no	yes	d	nrsq	yes
20100204	0317-0346	yes	no	no	е	nrsq	yes
20100306	0105-0155	yes	yes	yes	e	nrsq	yes
20100306	0150-0158	yes	yes	yes	d	nrsq	yes
20100306	0201-0220	yes	no	yes	d	nrsq	yes

All events are associated with pulsating aurora around the footprints of spacecraft.

Quasi field-aligned propagation

Correlation with pulsating aurora for 7 most intense chorus

bursts (a) 01:50:48 UT Chorus TH-D

The PA and chorus correlation at two spacecraft suggests that a coherent chorus size corresponds to the size of wave-particle interaction determining the PA size.

(A) THEMIS ASI Quiet-time spacecraft footprint h 2010-01-06/06:37:00 UT TH-D g 2010-01-06/06:17:33 UT TH-E f 2010-01-06/05:31:03 UT TH-D i 2010-01-14/05:08:27 UT TH-D j 2010-02-04/03:48:45 UT TH-E m 2010-03-06/02:12:57 UT TH-D

- ■IGRF ■T89 ■T96 ■T02 ■T05s
- chorus-PA correlation

-1.0 -0.5 0.0 0.5 1.0 Normarized difference intensity

a 2008-11-09/06:26:48 UT TH-E

d 2009-02-15/01:38:00 UT TH-E

(B) THEMIS ASI Disturbed-time spacecraft footprint b 2008-12-07/05:56:30 UT TH-E c 2009-01-15/01:11:00 UT TH-A

e 2009-02-15/01:44:00 UT TH-A

k 2010-03-06/01:53:48 UT TH-D

2010-03-06/01:53:48 UT TH-E

-1.0-0.5 0.0 0.5 1.0 Normarized difference intensity

■IGRF ■T89 ■T96 ■T02 ■T05s • chorus-PA correlation