Plasma Pressure Constraints on Magnetic Field Structure in the Substorm Growth Phase

Sorin G. Zaharia ${ }^{1}$ and Chih-Ping Wang ${ }^{2}$

${ }^{1}$ Los Alamos National Laboratory ${ }^{2}$ UCLA

Motivation

I. Substorm growth phase

- Gradual energy loading on time scale >> Alfven time scale
- Configuration (magnetic field, electric current) not well described by existing models
II. Large plasma beta (ratio of plasma pressure to magnetic pressure; values of 50 and higher [Saito et al., GRL 2008]) plasma has strong influence on the field
III. Use growth phase observations to construct empirical pressure model
Iv. Use pressure model as input to 3D force balanced magnetospheric model

THEMIS/Geotail Plasma Pressure

Substorms identified by Dr. Tung-Shin Hsu

Observations: THEMIS + Geotail (2007-2010) (1995-2005)

Preliminary Results: Using THEMIS/Geotail Plasma Pressure

- Geotail + TH تMS growth phase datalbinned by AE
- Smooth profile while capturing major features
- Nonlinear least square fit with constraints
- $P>P_{\text {min }}$
- Bound constraints for coefficients a

$$
P(R, \phi)=\exp \left(a_{1} R\right)\left(a_{2}+a_{3} \sin \phi+a_{4} \sin ^{2} \phi\right)+R^{b_{1}}\left(b_{2}+b_{3} \sin \phi+b_{4} \sin ^{2} \phi\right)
$$

- Clobal vs. Local Optimization; solution uniqueness
- Cf. TSyganenko and Mukai, [2003] (no dawn/dusk asymmetry from Geotail data - LFP)

THEMIS/Geotail P Fitting

Observed P

Correl. coeff $=0.888083211213$
$1 \mathrm{e}-01$

- High correlation coefficient (cf. Tsyganenko and Mukai, [2003])
- Dawn-dusk asymmetry in near-Earth region

3D Equilibrium - Euler Potential Form

$$
\mathrm{J} \times \mathrm{B}=\nabla P
$$

- With isotropic pressure: $P=P(\alpha, \beta)$
- De-composition along $\mathbf{B} \times \nabla \alpha$ and $\mathbf{B} \times \nabla \beta$.

$$
\begin{aligned}
& \mathbf{J} \cdot \nabla \alpha=\frac{1}{\mu_{0}} \nabla \cdot\left[(\nabla \alpha)^{2} \nabla \beta-(\nabla \alpha \cdot \nabla \beta) \nabla \alpha\right]=-\frac{\partial P}{\partial \beta} \\
& \mathbf{J} \cdot \nabla \beta=\frac{1}{\mu_{0}} \nabla \cdot\left[(\nabla \alpha \cdot \nabla \beta) \nabla \beta-(\nabla \beta)^{2} \nabla \alpha\right]=\frac{\partial P}{\partial \alpha}
\end{aligned}
$$

- (1), (2) coupled Grad-Shafranov-like "quasi-2D" equations on const. α and β surfaces; needed: pressure profile + magnetic boundary conditions
- Solution - in inverse form; magnetic field lines are explicit output (no need for integration etc.)

$$
X(\alpha, \beta, \chi), \quad Y(\alpha, \beta, \chi), \quad Z(\alpha, \beta, \chi)
$$

Equatorial B-Field

B-Field on Midnight Meridian

- Observations not exactly at $\mathbf{Z}=0$; no realistic tilt in model
- 189,196 fields too large at $|X|>15 R_{E}$ (not enough stretching)

Plasma Beta and Field Curvature

Equatorial field curvature radius $\left(R_{E}\right)$

$\nabla\left(P+\frac{B^{2}}{2 \mu_{0}}\right)=\frac{(\mathbf{B} \cdot \nabla) \mathbf{B}}{\mu_{0}}=\kappa B^{2}$
$P=$ Plasma pressure
$B^{2} / 2 \mu_{0}=$ "Magnetic pressure"
$\beta=2 \mu_{0} P / B^{2}$
$R_{c}=\frac{1}{\kappa}$ Radius of curvature

Isotropy Boundary

Isotropy boundary separating poleward region of energetic (> 30keV) particle isotropic precipitation from equatorward region of weak precipitation/loss-cone filling

Threshold condition $R_{c} / \rho<8$ [Sergeev, 1993]

Remote sensing tool - proxy for field curvature

Future work: combine with low-altitude observations
(DMSP, FAST)

