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1. Abstract - 4 Mg;hodfglogy > 6. Estimated Response of JADE-I at 10 R, from Jupiter

Instruments comprising of an ESA, TOF mass spectrometer are commonly used in
space applications to measure energetic multi-ion plasmas in space environment.
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Measurements from such instruments provide ion species determination and energy Jovian magnetosphere Simulation Model
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spectrograms for individual ion species. However, species with similar M/q (e.g. 0"
and %7 in the Jovian magnetosphere), can raise ambiguity in the TOF measurements.In this Ad just Carbon
study, we introduce an analysis technique to resolve this issue on ESA-TOF - .

instruments. Our case study with JADE-| instrument onboard NASA’s Juno Mission Foil Thickness : 2
show that M/q ambiguity may be resolved for atomic ions. P Find a best matching

composition ratio
using MPFIT
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Estimated Response of JADE-I at 10 R,
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2. Motivation

p h VOYAGER | INBOUN .
* Voyager and Galileo revealed species 975 63 1537 35085 "

with M/q = 16 in the Jovian
magnetosphere.

* These species are identified as 0" and
S2* which are considered as major ions
in the Jovian magnetosphere.

* Relative abundances are studied with
physical assumptions due to M/q '

— Does the peak |

* Resolving M/gq ambiguity on JADE-I will L - L Compa rison position of the TOF.| °

improve our knowledge on the Jovian ENERGY / CHARGE (VOLTS) Simulation with in-situ data curve match?

magnetosphere. McNutt et al. 1981
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3. Simulation Model and Carbon Foil Effects | 5. koil"Thickness Deter

Carbon foils are used to give start pulse to the TOF mass spectrometers via
secondary electron emission. Other carbon foil effects include charge state yield,
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Carbon foil effects on transmitted ions vary with thickness.
We compared the simulation results with JADE-I in-situ measurements to estimate

energy loss of incident ions. By characterizing these effects for each voltage step the average thickness of carbon foils that are used in JADE-I. . . + y

V £s4 and individual ion species, better mass determination can be achieved. 7. Various Abundance Ratios of 0™ and § (M / q= 16)
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