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Introduction

e Aim:
To review current theory and modeling of the radiation belts

(with emphasis on relativistic electrons during magnetic storms)

e Radiation belts: trapped particles & 500 keV

e Relativistic electrons are of special interest because high
fluxes of these particles:

o Are associated with spacecraft operational anomalies.
o Are hazardous to humans in space.

o Affect the middle atmosphere through precipitation.

e The basic physical processes responsible for these
high fluxes are not well understood.



Observations

e Radiation belts vary on three main time scales:

1. Quasi-static variations on time scales of months
2. Variations of MeV electron flux over hours-days

3. Strong flux increases on time scales of minutes



1. Quasi-static variations on time scales of months
o Quiet-times, between storms
o E.g., several-month decay of March 91 fluxes
o Extensive body of early work [Schulz and Lanzerotti, 1974]

o Assume radial and pitch-angle diffusion with static coeffi-
cients

2. Variations of MeV electron flux over hours—days

o Associated with high speed stream, CME, and magnetic
cloud storms

[E.g., Baker et al., 1986, 1997, 1998; Reeves et al., 1998]

o Often show similarity between log(flux) and Dst

Flux decrease followed by large increase

o Flux decreases reproduced by models

[E.g., Kim and Chan, 1997]

o Physical mechanism for the flux increases?

3. Strong flux increases on time scales of minutes
o Associated with sudden compression of the magnetosphere
o Strong flux enhancements on particle-drift time scales

o Examples: March 24, 1991 and August 18, 1991

o Highly successful modeling of these events
[Li et al., 1993; Hudson et al., 1995]



Overview of Physical Mechanisms

Mechanisms for the Flux Decreases

e Loss to the Atmosphere
o Pitch-angle scattering into the atmospheric loss cone.

o Precipitating electrons are observed.

But not enough to account for observed flux decreases?

e Loss to the Magnetopause

o Changes in the global magnetospheric configuration results
in particles drifting into the magnetopause.

o The dayside magnetopause can be pushed inside 6.6 Rp

e Fully-Adiabatic Flux Changes

o All three adiabatic invariants are conserved.

o Flux changes result from mapping of the constant phase-
space density.



What Causes the Flux Increases?

e Entry of energetic electrons from outside the
magnetosphere?

E.g.. electrons associated with solar flares, CIR shocks, Jovian
electrons

e Probably not the dominant source:

o For some events the fluxes rise first deep inside the
magnetosphere.

o Solar wind phase-space densities are too low to supply
observed magnetospheric fluxes.

[Li et al., 1997]

e Thus, internal acceleration mechanisms seem more important...



Proposed mechanisms for the flux increases:
e Recirculation

[ Nushida, 1976; Fujimoto and Nishida, 1990]

e Cyclotron-resonant heating by whistler-mode waves
[ Temerin et al., 1994; Summers et al., 1998]

e Fully-adiabatic flux changes (recovery phase)

[E.g., Kim and Chan, 1997]

e Substorm injection of energetic plasma sheet electrons

[E.g., Chan et al., 1997; Kim, 1999]

e Diffusion of trapped energetic electrons from the cusp

[Sheldon et al., 1998]

e Drift-resonant acceleration by MHD waves

[Hudson et al., 1998; Chan and Hudson, 1998]

e Acceleration and pitch angle scattering by ULF and whistlers
[Liu et al, 1999]



1. Theoretical Foundations

Adiabatic Theory

Useful basic references: Northrop and Teller [1960]; Kruskal [1962];
Northrop [1963]; Roederer [1970]; Schulz and Lanzerotti [1974];
Wolf [1983]; Schulz [1991]

e A charged particle trapped in a magnetic field B undergoes mo-
tion with three distinct frequencies:

o Cyclotron: w, = eB/mc
o Bounce: wy ~ vy /L (where L is the field line length)

o Drift: wy &~ v4/74 (Where vg is the VB and curvature drift
velocity and 74 is the radius of the drift orbit)

Each of these is associated with a corresponding phase angle:
gyrophase, bounce phase, and drift phase.

e In guiding center (GC) theory: use the separation of the
gyroperiod from other time scales in the system to define a small
parameter €;, where

€o ~ |0In B/0t|/w. ~ p|VIn B| < 1.

This GC parameter ¢, is used to remove the gyrophase de-
pendence from the system. order by order in ¢



e To lowest order: average the eqs of motion over the gyrophase
angle [Alfvén, 1950; Northrop, 1963]

e Removal of gyrophase dependence to higher orders in ¢, is
more difficult ...

Gyrophase dependence can be removed to arbitrary order

using phase-space Lagrangian Lie transform methods
[ Littlejohn, 1982; Brizard, 1989; Chan, 1991]

e Removal of gyrophase dependence to a given order in € implies
conservation of a conjugate quantity to that order in ¢

The conserved quantity, called the first adiabatic invariant,
(L, 1s an asymptotic series in powers of €

e To zeroth order in eq |yt = g = p* /2mB

p = m~yv is the relativistic momentum and B is evaluated at
the GC position

e Advantages of GC equations:
The phase space is reduced from 6D to 4D

Removal of fast gyromotion = much larger time steps in
computer simulations



Bounce motion and the second invariant

e The guiding center system can be further reduced:

o Define a second small parameter

e;=(bounce period)/(next-higher time scale)
o Remove the bounce-phase dependence order by order in ¢,
o Obtain the second invariant .J

To lowest-order
J = f{pH dS

and the equations of motion are bounce-averaged

[Northrop and Teller, 1960; Wolf, 1983]

e A better invariant than .J is the energy-independent quantity

J
V8mp

where B,, is the mirror point field.

K =

= [VB,, — Bds

K is a function of configuration space coordinates only

10



Drift motion and the third invariant

e Finally, if w; > (any remaining frequency)
the third invariant is ¥, the magnetic flux linked by the
“bounce center” during a drift orbit.

e An alternative to U is the “Roederer L shell”:

I — 27TME
RpW

where Mg is the planetary magnetic moment.

o (i, K, L*) are a preferred set of coordinates for radiation belt
studies

[Schulz, 1996; Selesnick et al., 1997; Selesnick and Blake, 1998]
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Radiation Belt Transport Equations

e An adiabatic invariant can be broken when there is a change
on a time scale < the time scale of the corresponding periodic

motion.

e Processes which break adiabatic invariants may lead to transport

described by a Fokker-Planck equation:
f

9F 3 9 (. OF o
ot @',]21 0.J; ( ]an) @; 0J; (Lif) + TL

f 1is the phase-space density averaged over phase angles
J; are the three adiabatic invariants
D;; are diffusion tensor elements
['; are drag coefficients
S, 71, represent sources and losses

e Transport equations in coordinates other than (.J;, Js, J3)
(such as (p, K, L*)) are obtained by inserting Jacobian factors

12



2. Modeling Methods

e Important features of radiation belt particles:
o High energy, low density, trapped particles
o Magnetic drifts dominate convection E X B drifts

o Do not significantly affect electromagnetic fields

e Thus:
o Test-particle calculations are accurate
o Theoretical models are relatively simple (conceptually)

o Simulation codes are relatively fast (highly parallelizable)

e Two main approaches to radiation belt modeling:

o The “Liouville approach”
o The “Fokker-Planck approach”

13



The Liouville Approach

e Compute test-particle trajectories and apply Liouville’s theorem

e Lorentz-force equations: straightforward but expensive
Use time-reversed orbits and reduced dynamics

E.g.. guiding-center or bounce-averaged

e Requires:
o B and E fields on length and time scales of interest
o Test-particle initial and boundary conditions

o Initial and boundary phase-space densities

e Examples:

o Simulation of the March 1991 event [Lz et al., 1993; Hudson
et al., 1995]

o Simulation of the January 1997 event [Hudson et al., 1998]

o Response of MeV electrons to storm-time B changes

[Kim and Chan, 1997]

14



The Fokker-Planck Approach

e Solve a Fokker-Planck equation for a phase-averaged phase-space
density f

e Early radial diffusion calculations of this type.

Recent work exemplified by the Salammbo code

[Beutier et al., 1995; Bourdarie et al., 1997]

e Processes which break the 3 adiabatic invariants represented by
transport coefficients such as Dy, Dyy, Dyy, Dy,, etc.

e Requires

o Initial and boundary conditions for f
o Magnetospheric magnetic field model

o Transport coefficients, loss lifetimes, source terms, ...

e Enables inclusion of high-frequency wave-particle interactions
(~wee) through D,

[E.g., Temerin et al., 1994; Horne and Thorne, 1998]

etc.

15



Comparison of Liouville and Fokker-Planck Approaches

e Liouville approach contains more complete physics,

but this is probably not always necessary

e Fokker-Planck approach can give large savings in computer time,

but underlying assumptions may not be justified

e Both approaches should be developed...
o Model test cases and real events
o Compare with observations and with one another

o Multisatellite data sets will be crucial

16



A Comment on Data Analysis:

e Plotting phase-space density as a function of (u, K, L*) is very
useful for separating adiabatic and nonadiabatic behavior,
including

o Sources
o Losses

o Transport and acceleration

e This requires:
o Large range and good resolution in r, energy and pitch angle

o A reliable magnetic field model

[E.g., Selesnick et al., 1997; Selesnick and Blake, 1998]

e Multisatellite plots of f(u, K, L*) are especially interesting

17



3. Theoretical Foundations Revisited

Phase-Space Lagrangian Methods

Advantages of the PSL methods:

1. A Hamiltonian formulation allows a general picture of res-
onant wave-particle interactions in terms of breaking of
adiabatic invariants

2. Hamiltonian conservation properties (e.g., conservation
of energy and phase-space volume) are retained

3. Not restricted to using canonical variables.

4. Lie transforms provide a systematic efficient method to
calculate high-order GC equations.

5. The methods allow many extensions:

e A conserved quantity for time-dependent systems

o w < w, wave-particle interactions [Chan et al., 1989
e Relativistic motion [E.g., Brizard and Chan, 1999

e Drift-kinetic and gyrokinetic equations [Brizard, 1989

18



The Phase-Space Lagrangian

e Traditionally, Hamiltonian mechanics is defined by
o a scalar function H (the Hamiltonian), and

o a special set of phase-space coordinates (q, p)
(the canonical coordinates)

such that the time evolution of the system is given by

_9H - oH
~ Op - Oq

(Hamilton’s equations)

q
In general, q and p are N-vectors and H is a function of (q, p, t)

e Alternatively, Hamiltonian mechanics can be derived from
the variational principle

6 [ L(q,p,q,p,t)dt =0

where the function

L<q7p7q7p7t) qu_H<q7p7t)

is called the phase-space Lagrangian (PSL)

e These two approaches are equivalent,
but the PSL is not restricted to canonical coordinates

19



The equations of motion

e Consider an arbitrary phase-space coordinate transform given by
the 2N functions z' = 2'(q,p,t) for i=1,...,2N

e By the chain rule

L(z,2.t) = v(z,t)3" — h(z,1)

where

dq

d
iz, t) =P o Wz, t) = H(q,p,t) —p- o

ot

L is the PSL in arbitrary phase-space coordinates.

It i1s the central object of noncanonical Hamiltonian
mechanics

e In these coordinates the variational principle yields the following
Euler-Lagrange equations:

wij,éj = 0;h + Oy,
where 0; = 0/9z" and

wij = 9;Y; — 0

20



The equations of motion ...

e [t can be shown that:

o w;; is a matrix of Lagrange brackets
wij = [2',72'] = dp - 9,4 — O;p - Biq
o The inverse of w;; is a matrix of Poisson brackets

=12} =0q2' - Opz’ — Opz' - g’

e Using JV = w;; ~1 the Euler-Lagrange equations can be solved
explicitly for the time derivatives:

Z.i = Jij(ajh - &7]-)

Hamalton’s equations wn arbitrary phase-space coordinates

e The matrix w;;' can be used to find {f, H}.

i
Then we have

%
= {r.m

21



A fundamental example: charged particle motion

1. The canonical Hamiltonian for nonrelativistic motion is

1 2

H(q,p,t) = 5~ [p — ZA(qa t)] +e®(q,t)

where
q=X and p=mv+(e/m)A(q,t)

(x and v are the particle position and velocity)

2. The corresponding phase-space Lagrangian is

L=p-q- {% [p - ZA(OL t)r +e®(q, t)}

3. In the noncanonical but more physical phase-space coordi-
nates z = (x, v) the PSL becomes

1 .
L = (EA — mv) - X — (émvz + eCID)
c

4. The corresponding Euler-Lagrange equations are

. e
X =V and V= —

1
(E—|——V><B)
c

m

The usual Newton-Lorentz equations of motion
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Application to Guiding Center Theory

The Guiding Center Phase-Space Lagrangian

e Starting point: the PSL for motion in a static electromagnetic

field B=VxA, E=-Vo is

1
Y= (EA + mv) cdx — (—mv2 + eq)) dt
c 2

e In dimensionless form:

1 1
’y:—(A—I—eov)-dx—(évQ—l—CI)) dt

€0

where g = py/Ry < 1, with py = vg/we, the characteristic
gyroradius.

¢ Transforming from (x, v) to (x, v, g, {) where
v 18 the parallel velocity
po = vi/(2DB)
¢ 1s the gyrophase

the PSL transtorms to

1 — 1
7/ = — [A + €0<‘UHb + pBé)] cdx — (évﬁ + o B + CI)) dt

€0
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The Guiding Center Phase-Space Lagrangian...

e To first order in ¢; the guiding center PSL is

1 -
I = (—A+Ub) cdX +eypd=— H dt
€0

1 .
H = §U2—|—,LLB—|—CI)—|—O(€5)

All functions are evaluated at the GC position X

e The GC phase-space coordinates (X, U, i, =) are related to the
particle coordinates (X, vy, po, ) by

X = x—¢ep+O(e)
U = v+ O(e)
po= o+ Ole)
= = £+ O(e)

24



Hamiltonian Guiding Center Equations of Motion

e To first order in ¢, the Euler-Lagrange equations are:

=70

showing that ;1 is an exact constant of the motion (to this order),

1
-=—B
€0

showing the fast gyromotion,

U=b-X
showing that U is indeed the GC parallel velocity,
. 1 - |
X = [UB* + b x (uVB — E)|
I

which contains the curvature, VB, and E x B drifts, and

: B*
U =

——_.(E— uVB)

showing the F) acceleration and the mirror force

(Here B* = B + UV x b and Bf =b - BY)

e To order ¢, these are the GC equations of Northrop [1963]

e Second order terms (such as those in the factor B*/B[) ensure
the Hamiltonian properties are preserved

25



The Relativistic Guiding Center PSL

e The nonrelativistic GC PSL
L = (gA—I—muH) -X—H
c
with Hamiltonian

1
Hzimuﬁ%—ﬂB—l—q@

is easily generalized...

e Use the relativistic momentum p = m~yv

v=(1- 112/(:2)_1/2 is the Lorentz factor

e The relativistic guiding center PSL is

L=(1A+p)) X+eud—H

with Hamiltonian

H = ﬁ?ﬁcg +2mc2uB + m2et 4+ ¢

and 1 = p? /2mB is the relativistic first adiabatic invariant

26



Resonance Islands and Resonance Overlap

A Generic Picture of Wave-Particle Interactions

e Consider a periodic system subject to a perturbation

E.g.. motion of a trapped particle subject to waves

e The unperturbed motion is very simple when expressed in action-
angle variables (J, 8)

e The equations of motion in terms of the action variables may be
written in the form

J=3 An(J,1)e™0
n

where n is a vector index of integers and the coefficients An(J,t)
are Fourier coefficients of the perturbed velocities

e An(J, 1) are called the wave-particle coupling coefficients

27



A Generic Picture of Wave-Particle Interactions ...

e Integrating along the unperturbed orbits yields the
resonance condition

w—n-QJ)=0,

e For small perturbations, the trajectories in the neighborhood of
the resonant surfaces form island chains

e For larger perturbation amplitude the islands may “overlap”,
resulting in large-scale chaotic motion

| Charikov, 1979

o If the islands overlap sufficiently, the motion may be approxi-
mated by a quasilinear diffusion tensor, D;;

D;; are proportional to the square of the wave-particle coupling
coefficients.

|Kaufman, 1972]

28



Motion in One Mode

e Poincaré plot: J; vs 0, when 6, = 0 (mod27)
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e An island chain of stable and unstable fixed points

Resonance location: w—mn-2 =0

Resonance width: AJ ~ 2\/A,, /D,
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Motion in More Than One Mode
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Low-Frequency Relativistic Kinetic Eqgs

e Once the PSL for single-particle motion is obtained the kinetic
equation for collisionless plasma follows very simply...

e For example:
o Start with the PSL for full-particle motion
o Obtain general Poisson brackets from the PSL
o Obtain {f, H}
o Liouville’s theorem = df /dt = 0
o0=df/dt ={f, H} +0f/0t = the Vlasov equation

e Since the full-particle to guiding-center transformation is just a
coordinate transformation df /dt = 0 still holds.

Just use the Poisson brackets of the transformed PSL to obtain
the corresponding (drift-kinetic/gyrokinetic) kinetic equation

e This procedure is much (much!) simpler than other methods of
obtaining nonlinear low-frequency kinetic equations.

31



e Recently, Chen [1998] used these methods to derive nonrelativis-
tic quasilinear equations

The quasilinear equations have the Fokker-Planck form, with
a diffusion term and a drag term due to low-frequency wave-
particle interactions

e Brizard and Chan [1999] have derived a relativistic nonlinear
gyrokinetic equation.

A first step toward a first-principles derivation of a Fokker-Planck
radiation belt transport equation

32



Summary

e The phase-space Lagrangian methods provide
powerful tools for deriving guiding center equations

The resulting equations

o Preserve the Hamiltonian properties

(Energy and phase-space volume conservation)

o Are easily extended to more general situations

(E.g., relativistic eqs, wave-particle interactions,
self-consistent eqs, ...)

e The generic picture of resonance islands is very
useful for analyzing wave-particle interactions.

33



Concluding Remarks

e Radiation belt physics is undergoing a renaissance:
o New physical mechanisms
o New theoretical methods
o Increased modeling capability
o Observations from improved instruments

o Multi-spacecraft studies

e The coupling of recent theory, modeling, and ob-

servations shows great promise for construction of a
GGCM radiation belt module

e However, much work remains...
o How are the storm-time MeV electrons produced?
o Multi-spacecraft plots of f(u, K, L*,t)?
o Improved magnetospheric field models are needed.

o Initial and boundary fluxes are needed.

34



References

Alfvén, H. A., Cosmical Electrodynamics. Oxford University Press, 1950.

Baker, D. N.. J. B. Blake, R. W. Klebesadel, and P. R. Higbie, Highly relativistic elec-
trons in the Earth’s outer magnetosphere 1. Lifetimes and temporal history 1979-1984,
J. Geophys. Res., 91, 4265-4276, 1986.

Baker, D. N., et al., Recurrent geomagnetic storms and relativistic electron enhancements
in the outer magnetosphere: ISTP coordinate measurements, J. Geophys. Res., 102,

14,141, 1997.

Baker, D. N., et al., Coronal mass ejections, magnetic clouds, and relativistic magneto-

spheric electron events: ISTP, J. Geophys. Res., 103(A8), 17279, 1998.

Beutier, T., D. Boscher, and M. France, Salammbo6: A three-dimensional simulation of

the proton radiation belt, J. Geophys. Res., 100, 17181-17188, 1995.

Bourdarie, S.; D. Boscher, T. Beutier, J.-A. Sauvaud, and M. Blanc, Electron and proton
radiation belt dynamics simulations during storm periods. a new asymetric convective-

diffusive model, J. Geophys. Res., 102(A8), 17,541, 1997.

Brizard, A. J., Nonlinear gyrokinetic Maxwell-Vlasov equations using magnetic coordi-

nates, J. Plasma Phys., 41(3), 541-559, 1989.

Brizard, A. J., and A. A. Chan, Relativistic nonlinear gyrokinetic Vlasov-Maxwell equa-
tions, For submission to Physics of Plasmas, 1999.

Chan, A. A., Interaction of energetic ring current protons with magnetospheric hydromag-
netic waves, Ph.D. thesis, Princeton University, Princeton, N.J., 1991.

Chan, A. A.,; and M. K. Hudson, Phase-space structure of drift-resonant interactions
between relativistic electrons and hydromagnetic waves, FoS, Trans. AGU, 7/, Fall

Meeting Suppl.(43), 501, 1998.

Chan, A. A., L. Chen, and R. B. White, Nonlinear interaction of energetic ring current
protons with magnetospheric hydromagnetic waves, Geophys. Res. Lett., 16(10), 1133~
1136, 1989.

Chan, A. A., H.-J. Kim, and R. A. Wolf, Mev electrons: Fully-adiabatic response and
substorm injection, 1997 GEM Workshop, Snowmass, Colorado, 1997.

Chen, L., Theory of plasma transport induced by low-frequency hydromagnetic waves,
J. Geophys. Res., Accepted for publication, 1998.

Chirikov, B. V., A universal instability of many-dimensional oscillator systems, Phys.

Rep., 52(5), 263-379, 1979.

Fujimoto, M., and A. Nishida, Energization and anisotropization of energetic electrons in
the Earth’s radiation belt by the recirculation process, J. Geophys. Res., 95, 4265-4270,
1990.

Horne, R. B., and R. M. Thorne, Potential waves for relativistic electron scattering and
stochastic acceleration during magnetic storms, Geophys. Res. Lett., 25(15), 3011,
1998.

35



Hudson, M. K., A. D. Kotelnikov, X. Li, I. Roth, J. W. M. Temerin, J. B. Blake, and
M. S. Gussenhoven, Simulation of proton radiation belt formation during the March

24,1991 SSC, Geophys. Res. Lett., 22(3), 291-294, 1995.
Hudson, M. K., S. R. Elkington, J. G. Lyon, C. C. Goodrich, and T. J. Rosenberg,

Simulation of radiation belt dynamics driven by solar wind variations, in Sun-Farth
Plasma Connections, vol. 109, pp. 171-182. American Geophysical Union, 1998.

Kaufman, A. N., Quasilinear diffusion of an axisymmetric toroidal plasma, Phys. Fluids,

15(6), 10631069, 1972.

Kim, H.-J., Dynamics of relativistic electrons during magnetic storms, Ph.D. thesis, Rice
University, 1999.

Kim, H.-J., and A. A. Chan, Fully-adiabatic changes in storm-time relativistic electron

fluxes, J. Geophys. Res., 102, 22107-22116, 1997.

Kruskal, M. D., Asymptotic theory of Hamiltonian and other systems with all solutions
nearly periodic, J. Math. Phys., 3, 806-830, 1962.

Li, X., I. Roth, M. Temerin, J. R. Wygant, M. D. Hudson, and J. B. Blake, Simulation
of the prompt energization and transport of radiation belt particles during the March

24,1991 SSC, Geophys. Res. Lett., 20(22), 2423-2426, 1993.
Li, X.,; D. N. Baker, M. Temerin, D. Larson, R. P. Lin, G. D. Reeves, M. Looper, S. G.

Kanekal, and R. A. Mewaldt, Are energetic electrons in the solar wind the source of
the outer radiation belt?, Geophys. Res. Lett., 24, 923, 1997.

Littlejohn, R. G., Hamiltonian perturbation theory in noncanonical coordinates, J. Math.

Phys., 23, T42-T47, 1982,

Nishida, A., Outward diffusion of energetic particles from the Jovian radiation belt, J. Geo-
phys. Res., 81, 1771-1773, 1976.

Northrop, T. G., The Adiabatic Motion of Charged Particles. Wiley-Interscience Publish-
ers, New York, 1963.

Northrop, T. G., and E. Teller, Stability of the adiabatic motion of charged particles in
the Earth’s field, Phys. Rev., 117(1), 215-225, 1960.

Reeves, G. D., et al., The relativistic electron response at geosynchronous orbit during the

January 1997 magnetic storm, J. Geophys. Res., 103, 17559, 1998.

Roederer, J. G., Dynamics of Geomagnetically Trapped Radiation, vol. 2 of Physics and
Chemistry in Space. Springer-Verlag, 1970.

Schulz, M., The Magnetosphere, in Geomagnetism, Volume 4, pp. 87-293. Editor J. A. Ja-
cobs. Academic Press, 1991.

Schulz, M., Canonical coordinates for radiation belt modeling, in Radiation Belts: Models
and Standards, pp. 153-160. Editors J. F. Lemaire, D. Heynderickx, and D. N. Baker.
American Geophysical Union, 1996.

Schulz, M., and L. Lanzerotti, Particle Diffusion in the Radiation Belts. Springer-Verlag,
New York, 1974.

36



Selesnick, R. S., and J. B. Blake, Radiation belt electron observations following the Jan-
uary 1997 magnetic cloud event, Geophys. Res. Lett., 25(14), 2553, 1998.

Selesnick, R. S., J. B. Blake, W. A. Kolanski, and T. A. Fritz, A quiescent state of 3 to 8
MeV radiation belt electrons, Geophys. Res. Lett., 2/, 1343, 1997.

Sheldon, R. B., H. E. Spence, J. D. Sullivan, T. A. Fritz, and J. Chen, The discovery of
trapped energetic electrons in the outer cusp, Geophys. Res. Lett., 25(11), 1825, 1998.

Summers, D., R. M. Thorne, and F. Xiao, Relativistic theory of wave-particle resonant
diffusion with application to electron acceleration in the magnetosphere, J. Geophys.

Res., 103(9), 20,487, 1998.

Temerin, M., I. Roth, M. K. Hudson, and J. R. Wygant, New paradigm for the transport
and energization of radiation belt particles, FoS, Trans. AGU, 75(44), 538, 1994.

Wolf, R. A., The quasi-static (slow-flow) region of the magnetosphere, in Solar-Terestrial
Physics. Editors R. Carovillano and J. Forbes. D. Reidel, 1983.

37



