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Outline 0

e Introduction: M-I Coupling Campaign WG2
(Electrodynamics of M-I Coupling)

e Magnetosphere — main electrodynamic driver of
ionosphere, via field-aligned currents

e Magnetosphere-ionosphere link
Parallel electric fields

Particle energization; parallel electron beams;
aurora

lonospheric conductivity; Joule heating

e Time-dependent picture
Alfvén waves; ionospheric Alfvén resonator
Non-MHD effects; Wave-particle interactions

e Observations; FAST mission

e Issues in M-I Coupling Campaign WG2
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GEM M-I Coupling Campaign - |’
WG2 0

e WG1 — lonospheric Plasma in the
Magnetosphere

e WG2 — Electrodynamics of M-I Coupling

understanding how EM energy is transferred
between the ionosphere and magnetosphere,
and how several factors (e.qg. field-aligned
currents, electric fields, waves) affect this
transfer at different scales

Connections with other campaigns (IM-
Storms, GGCM) — M-I coupling is just a part
In the overall solar-wind-magnetosphere-
lonosphere system



Driver: Field-aligned EEE:
currents 0s

e Linkage between solar wind-magnetosphere
system and ionosphere — act as a dynamo

e Region 1 and region 2 currents; Mantle/NBZ
currents at the ionosphere

e Magnetospheric formation: due to pressure
gradients Ulj5+ U, 0, =0

e FACs close through the ionosphere, in the
auroral zones
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e |onosphere is collisional, so EM energy is
dissipated there; E electric fields must exist, and
so the ionosphere Is a load for the current system



lonospheric conductivity:
Hall and Pedersen currents

e lonosphere — one-fluid model not applicable,
need to use three (or more)-fluid model

e Relation between current and E-field:

E. xB
B

Ju :UPED_UH
J, =0,E

Op = Pedersen conductivity
Oy = Hall conductivity
O, = parallel conductivity
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e Particle precipitation can change o, so feedback
interaction with the magnetosphere



Steady-state Energy 0000

0000
Transfer to the lonosphere: |!!

Joule Heating

e Downward Poynting flux from the magnetosphere
is dissipated in the ionosphere

e Joule heating rate: J [E

e Energy dissipated by the current parallel to E; -
Pedersen current

e Joule heating dependence on characteristic
energy; more energetic particles penetrate more
deeply into the ionosphere, where o, > o,
therefore Joule heating is less important for them

l

Vertical structure of conductivity also important

e Aside: Joule heating can also lead to ionospheric

thermal events.



Auroral energization
region; electron beams

“Inverted-V” electron events in auroral
acceleration region (2000 - 4000 km): energy

of electrons indicates the electric potential

INVERTED-V ELECTRON EVENT
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e Discrepancy between inverted-V events and

discrete auroral arcs

THE LATITUGINAL WIDTH OF AN INVERTED-YV ELECTRON EVENT
15 OFTEN MEARLY TWOQ ORDERS OF MAGHNITUD: LARGER THAN
THE APPARENT THICKNESS OF A THIN EASGRETE ARG
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E|| Formation

Parallel electron beams (1-10 keV) energized | ¢

by parallel potential drop

They excite atoms in the neutral atmo
aurora

EII theories:

sphere —

Macroscopic: model the macroscopic current
Microscopic: how E;, arises from microscopic

effects (instabilities)

Observations: E not continuous, but series of
Iocallzed potentlal steps double layers
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e Double layer formation — plasma turbulence

effects (nonlinear effects due to trappi
and electrons in localized potential bu

ng of ions
mps)



Time-dependency: Role eee
of Alfvén Waves 0o
0

e System not in steady-state — inclusion of
temporal variation required

e |onosphere “cold” (low (3); Cold MHD plasma
wave theory — 3 wave modes:

Fast (magnetosonic) wave
Slow wave
(shear) Alfvén wave, with V, = By/(41tp)"/?

e Shear waves exists in the magnetosphere
(“natural modes” - field-line resonances — FLR)
and couple to the ionosphere




Similarity between static 00ee
Pedersen current and E:'

Alfvén waves

e Physical quantities in the Alfvén wave:

Fluid velocity: voi 0
A ATTo
: oo, BoXxDb
Perpendicular electric field: g =+
c /47T
2
Perpendicular current: o=+ En
47N
(currents defined as 1 .= Idzj 5 )
e Analogy:
Ohm'’s law with PedersenZ: [o=2_E o
2
, . C
Alfvén “conductivity”: dA=
47 A

e Difficult (but possible) to distinguish between
static current patterns (Pedersen) and
propagating Alfvén waves

e Conductivities different:  2r>1mho
2A<0.1mho
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Alfvén Wave Reflection; oo
lonospheric Alfvén 0
Resonator (IAR) :

e Due to difference between Z, and 2, =
ionospheric reflection of Alfven waves

e By matching currents of incident/reflected wave
with ionospheric currents = reflection coefficient

_2A—2p

R =
2A+2p

e V), not constant = waves can be trapped between
two altitudes characterized by large VA : the lower
limit at F-layer, the upper limit at about 3000 km

e Formation of resonant cavity modes — Alfvén
resonator
Frequencies of 0.1 — 1 Hz and higher

Can have growing modes - ionospheric feedback
instability (beam instability)



lonospheric waveguide ot

High electron density at lower altitudes
compressional (magnetosonic) waves
also propagate or resonate —
ionospheric waveguide in F region of
the ionosphere for magnetosonic
waves

lanosphere
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Wave-particle interactions o

e MHD picture breaks down for large k-
e [nertial term important at low altitudes (v, < V,)

_ k 1 Va
JI+kie? Jwl,

w

e Kinetic effects (finite Larmor radius) important at
higher altitudes (v, > V,)

W=k, VA\/I +k’p’°
e Both regimes called “kinetic Alfven waves”

e Kinetic Alfvén waves have E|| !

Electron population accelerated in bulk —
current-driven instabilities may appear

Excitation of instabilities by the current in the
waves — formation of steady electric field
through the formation of double layers or
anomalous resistivity



Recent Observations of
Auroral Energization

Region

e FAST mission (Fast Auroral SnapshoT) —
launched in 1996

The Symmetric Auroral Current Regions
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Upward and
downward currents

Parallel electric fields
Particle beams
Plasma heating

Host of wave-particle
interactions
Higher-frequency
waves (ion-cyclotron)



Summary 0s

Auroral zone — “transmission line”, carrying EI\/{
energy from a magnetospheric generator region
to a load region (ionosphere)

Joule dissipation in the ionosphere
Non-linear losses (plasma turbulence)

Auroral particle energization
Particle acceleration region (2000-4000 km)
Parallel potential drop

Time-dependent picture
Alfvén waves
Wave-particle interactions:
M-I system — dynamical system; challenging
object of study — rich physics
= Plasma kinetic theory
More global aspects — fluid models

Similar current systems and particle energization
processes are likely to be present in other
astrophysical processes (e.g. solar flares,
accretion disks)



Issues in M-l Coupling 00
Campaign WG2 0

lonospheric conductance

Auroral Plasma Energization

global distribution ?
temporal and spatial variability

Relationship between precipitating electron flux
and field aligned currents

To what extent is M| coupling hemispherically
conjugate and synchronous?

What processes determine the formation and
structure, including length scales, time scales and
altitude, of auroral acceleration regions?

Multi-scale Processes

Manifestations: discrete aurora, filamentary and
layered auroral structures, polar cap arcs

how do the different scale sizes interact ?

Are averages of energy dissipation meaningful ?
{z ><E 2 > £ <z E 2 > How far off are they?

What scales contribute most to energy
dissipation?)

More general question: Does MI coupling
regulate (or how does it regulate) magnetospheric
convection, magnetotail dynamics, and solar wind-
magnetosphere coupling?

Energy Budget Challenge — the energy flow from
the magnetosphere to low altitudes and its myriad
pathways for deposition in the ionosphere and lower
magnetosphere
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