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What isthe Role of the IT system in M-I Coupling?

» A Depository for distant sources of energy flux

— Absorbing VUV solar radiation, _
magnetospheric Poynting flux and Kinetic # .
energy flux

« An Intermediary for charged and neutral gases

— Enforcing the physical laws of a
multiconstituent, collision dominated, weakly
lonized gas

» A Regulator of the magnetosphere

— Regulating M-I energy exchange through
coupled electrodynamic processes
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~ A Depository
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VUV Solar Radiation
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Magnetospheric Energy Transfer
to the Polar IT System
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Power Input to the Polar IT System

Solar VUV; Poynting Flux; Kinetic Energy Flux
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Local Energy Deposition Rates

Solar VUV ; Poynting Flux; Kinetic Energy Flux
Measured at 67N, solar maximum, summer solstice conditions

200 AL B L AL BB RLLL
: il | Height-Integrated
8.3 mW/m?
iy . - @
|02 keV — — 2.5 mW/m? -
2 ] 7keV —-- 35.3 mW/n?
E >
= 11.5 mV/m soeven
= 41 20 mVim | 1.7 mW/ny
E 60 mVim — — | Ry
E: 46.3 mW/m?

\ |
{____. ;
100 'I il .|._~{'.'I:...Lu|.- -.‘f:.- F s ..'_.T_J:."':!...J."I. I 1S O W W01
10-49 10-86 10-7 10-% 10-=
ENERGY DEFPOSITION RATE (W m-3)

Thayer and Semeter, 2003 JASTP

11



I'T System as a Depository

These fluxes drive the physics and chemlstry __
of the polar IT system £

These fluxes are each processed differently
by the polar I'T system

These fluxes can have competing contributions
In localized regions
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~AnlIntermediary
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lon and Electron Mobility Properties
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lon & Electron Momentum Equations

lon momentum equation in static E- and B-fields
with ion-neutral collisions only,
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Electron momentum equation in static E- and B-fields
with electron-neutral collisions only,
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lon & Electron Behavior in the E-region
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lon & Electron Motion through the E-region
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F-region Plasma Motion & Frozen-in Flux

Vactor Scale
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E-Region lon Motion — Where the Frozen-In Flux

2001 July 16 0812535 - 171141.7 UT
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E-region Current Behavior
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Currentsin the E-region
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E-Region Currents
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E-region Electrodynamics with Neutral Winds

lon momentum equation




Currents including neutral winds




Poynting Flux to Energy Deposition

Poynting’s Theorem
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I'T System as an Intermediary

Determining the relative roles of the neutral” ;
and charged particles of the IT system ’

Understanding the processes that govern
the response of the IT system
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~ A Regulator
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Kinetic Energy Fux

Newell et al., Reviews of Geophysics, May 2001

Suppression of intense aurora in sunlight

SZA > 110°
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Neutral Wind Observations
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Neutral Wind Influence on EM Energy Deposition
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Electric Field Variability
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Poynting Flux and Kinetic Energy Flux Exchange
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I'T Mass L oading of Magnetosphere
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@ Polar wind cleft ion fountain = — ————.
and polar cap source

Solar wind entry
and deflection

. Flasma sheet energization

Bouncing and
charge transfer

. Inward drift and betatron acceleration

Direct entry of enargized
auroral ions in the plasma

Plasmasphere -4 f sheet boundary layer

filling and
drainback into
ionosphere
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I'T System as a Regulator

Determining how the preconditioned state”
of the IT system impacts future coupling

Determining how the the energy flux of one source
Impacts the flux of another
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Upcoming Observing Programs




Observing Programs

NASA Missions

LWS geospace probes (IT Mappers ; Radiation Belt
Mappers) 2008-2010

MIDEX THEMIS mission — 2007 (Pl Vassilis
Angelopoulos)

Solar-Terrestrial Probes (TIMED, MMS, GEC,
MAGCON)

Ground-based Initiatives

Advanced Modular Incoherent Scatter Radar (AMISR)
NSF program approved

Improved SuperDarn coverage of the southern polar
region

Enhanced auroral imaging network to support THEMIS
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Geospace Electrodynamic Connection Mission

e Solar Terrestrial Probe mission within NASA SEC program
(planned launch date 2010)

* Three or four deep dipping spacecraft (perigee ~130 km)
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Advanced Modular Incoherent
Scatter Radar (AMISR)

A Transportable lonospheric Radar
— Poker Flat, Alaska 2004
— Resolute Bay, Nunavut 2006

' RAD Probing The Aumra
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Issuesin I-T Coupling to the Magnetosphere

 Mass Loading

e Current Closure ' A
* Reqgulation

e Source spectrum and interplay
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Summary of Polar IT System
Contributions

OO

M-I Coupling from the I-T perspective?

YES! I-M Coupling



When Nature Calls...

o Opportunity Knocks
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The Planned Coincidence



