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M agnetosphere lonosphere Coupling

M agnetospheric Currents Perpendicular to B produced plasma pressure gradients and

magnetic field stresses.

|l onospheric Currents Perpendicular to B produced by electric fields and neutral winds.

Gradientsin these currentsrequirefield aligned currentsthat must be consistent.

Electric fields produced in the magnetosphere and
ionospher e will modify the horizontal currents ( directly
in theionosphere; indirectly in the magnetosphere) to
make thefield-aligned currents consistent.

In theionosphere ExB drift motion of the plasmais
coupled to the neutral gasthrough collisions. The
changing ionospher e and ther mospher e change the
conductivity.

Precipitating particles carrying field-aligned currents
change theionospheric conductivity. Thusthe E+UxB
current ismodified.

Theionosphere-thermosphereis an active element in the
circuit. Itisboth a source and asink in thecircuit.
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M agnetosphere lonosphere Coupling

. i All currents must flow in closed loops.
V-i=0=V,.],+V,-J,
A divergencein the horizontal current must

Sl be accompanied by a changein thefield-
aligned currents.

DUSK

If this condition cannot be satisfied by the
original driver then a polarization electric
field isestablished to modify the current.

In the magnetospher e the requirement for
closed loop flows demands that field-aligned
currentsflow into and out of theionosphere.

Notethat the partial ring current gradients
come from the gradient and curvaturedrifts

‘]neutral sheet

only.
Field-Aligned currentsoriginate
1) near the equatorial edge of the magnetopause the Region-1 currents
2) in the plasma sheet wherethering current hasa divergence the Region-2 currents
3) at the magnetopause at high latitudes on the dayside the cusp currents
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Cusp Current

Rod Heelis, U.T. Dallas, GEM/CEDAR, 2005

The cusp current isthe signatur e of
the dayside interaction of the

Chapman-Ferraro inter planetary magnetic field with

Current

M/l Coupling

the geomagnetic field.

A variation in the configuration of
the cusp currentsisstrongly
dependent on IMF By.

Cusp currentsdecrease the C-F
current at high latitudeswhereit is
replaced by the Region 1 current
closure path .

Slide 4



M agnetosphere lonosphere Coupling

Electrojet
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Plasma sheet thinning can be associated with a diversion of some portion of the
neutral sheet current through the ionosphere.

This process occurs during a “magnetic substorm” and the current loop is called a
“substorm current wedge”
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Substor m
Wedge =

Theionosphereisitself a generator of current and the same principles apply.
Thustheionosphere may demand that field-aligned currents flow

into and out of the magnetosphere.

Agreement isreached between the ionospher e and magnetospher e by modifications of the electric
field and conductivity in theregions.

Temporal changes aretransmitted between the regions by Alfven waves.

Steady stateisrepresented by field-aligned currents.

Rod Heelis, U.T. Dallas, GEM/CEDAR, 2005 M/1 Coupling Slide 6



M agnetosphere lonosphere Coupling

Steady State Features

Energy Input to | onosphere hastwo flavor s “ electromagnetic’ and “particle’
“electromagnetic’ exceeds“particle’ by about afactor of 4 (Lu et al, JGR,10,19643,1995)

These energy inputs are frequently anticorrelated in space.

Electromagnetic enerqy isdivided into

Joule Heating Rate (>90%) and M omentum Exchange Rate(<10%)
e (D)

Joule Heating - Raisesthe neutral and plasma temper atures
Changesthe neutral pressure and associated wind field
Raises the plasma scale height and imparts outwar d field-aligned plasma
flows.

Momentum Exchange - | mpartsion motion to neutral gas.
Pressure gradients, Coriolis Forces and Viscosity
also modify the neutral wind.
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JouleHeating Rate- _ r r
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E-field Neutral Wind effect
effect

|smodified by changesin
Peder sen Conductivity
Electric Field mapped from the magnetosphere
Neutral wind modified by ion drag and gas heating.

Modificationsin the Joule Heating Rate must result in a change in thefield-aligned current
and/or the electric field.

Momentum Exchange Rate - Y 4B i
U-(J=B)
|smodified by changesin

Peder sen Conductivity

Electric Field mapped from the magnetosphere
Neutral wind modified by ion drag and gas heating.

Modificationsin the Momentum Exchange Rate must result in a changein the field-aligned
current and/or the electric field.
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Joule Heating Killeen et al, JGR, 89, 7495, 1984.
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In regions wheretheion and neutral velocity differ significantly theionswill be
frictionally heated.
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Joule Heating
Under steady state conditionsion-neutral collisions will impose the convective motion of

theionsupon the neutrals
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Day to night pressure gradientstend to assist the neutralsto flow antisunward.

Sunward flow in the neutralsin the auroral zoneis harder to achieve.
Most of the Joule heating occursin the auroral zones.

Why morein the dawnside than the dusk side ?
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Joule Heating
Enhancementsin theion temperature will change the plasma pressureresulting in field-

aligned vertical plasma flows.
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Poynting Flux
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M/l Coupling

Field-Aligned Currents provide channels
for the Poynting flux

Field-Aligned Poynting Flux isequal to
the energy dissipation ratein the volume
below the measur ement.

At high latitudes the Poynting flux is
predominantly downward in the auroral
zones and polar cap.

Thereisa net electromagnetic energy flux
to theionosphere from the
magnetosphere.

This energy flux ismodulate by the
lonospher e, reducing the magnitude of the
flux when the neutral wind conformsto
theion drift.

(U -U)
(V-0
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Poynting Flux

DE-B ION DRIFT VELOCITIES
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Particle energy

Field-Aligned currentscarried by electrons.
Upward currents...precipitating electrons from the magnetosphere
Downward currents ... upward flowing ionospheric electrons.

EM - > JM Electric fieldsand perpend?cular _currentsin the
magnetospher e demand a field-aligned current to
theionosphere

For field-aligned currentscarried by
E|| 3 J” magnetospheric electronsthe provided flux may
require acceleration along B.

Theelectric field in theionosphereis modified
by field-aligned potential drops.

a LB ] L The conductivity in the ionospher e is modified
by precipitating electronsand ions.
| —- J|
A r Theresulting perpendicular current must
UI requirethe samefield-aligned current .
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Particle enerqy

When an isotropic Maxwellian distribution with a given energy and number density
iIsaccelerated to carry a current the acceleration potential drop isrelated to the
field-aligned current density [Knight, Planet Space Sci., 21, 741,1973]
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Particle enerqy L = il
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Notice that the peak electric fields bound the particle precipitation regidn -so that thejoule
heating is adjacent to the particle heating.
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Particle enerqy

AE-C CONVECTION PARAMETERS
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Notice that the peak electric fields bound the particle precipitation region so that thejoule
heating is adjacent to the particle heating.
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Plasma Outflow
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L ockwood et al., JGR, 90, 936, 1985.
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The vertical ion flowsresulting from
frictional heating and particle heating
provide significant outward fluxes toward
the magnetosphere.

The observed field-aligned velocitiesin the
lonospher e ar e insufficient to provide
enough energy to overcomethe
gravitational potential.

However, there exist acceleration
mechanisms at altitudes above 2000 km
that providethisenergy.

Theionosphereisadominant sour ce of
plasma to the magnetosphere.
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Alfven Waves

DAWN DUSK

-
o

(=]
w

(=]
(=]

All the previous discussion assumed a quasi

FIELD-ALIGNED

, CURRENT fuAmsT)

steady state. = _ _
There are many occasions when thisis not Tko a0 w0 w0 o w0 @ % <o s
the case.

A shear in the electric field delivered to the g3 .] S

ionospher e will launch an Alfven wave 3f ;) Vo

toward the magnetosphereto impose a £3 B

simple pattern of field-aligned current. 500 400 00 200 100 O 100 200 300 400 500
Thiswave will bereflected and modify the

field-aligned current.

HALL CONDUCTANCE
(MHO)
o N A O &

A single structure can form into multiple
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Lysak and Song, JGR, 107, 101029, 2002
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Zhu et al., GRL, 21, 649, 1994
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Summary

Electric Fields areimposed on the ionospher e from the magnetosphere.
Thesefieldsrequirefield-aligned current loops.

Electric fields and field-aligned currents produce Joule and particle heating at high latitudes.

Electric fields also transfer momentum to the neutral atmosphere.

Joule Heating and Momentum Transfer modify the electric fields produced by dynamo action of
the neutral wind.

Electric fields and particles change the ionospheric conductivity and thusthe horizontal current
distribution in the ionosphere.

The horizontal current in theionosphere must be consistent with the field-aligned current that is
delivering electromagnetic and particle energy to the the ionospher e from the magnetosphere.

Joule and particle heating change the plasma pressurein theionosphere and impart upward
field-aligned motionsto the plasma.

The outward ionospheric ion fluxes are further accelerated into the magnetosphere where they
serve as a dominant sour ce of plasmato theinner magnetosphere.

Changesin time are communicated between theregions as Alfven waves. The propagation
properties of these waves can produce multiple spatial structuresfrom a singledriving feature
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Research Areas

In theionospher e above 300 km theions ExB drift but below this altitude the do not.
Thusthe motion imposed on the neutralsisa strong function of altitude.
How isthe Joule heating and momentum transfer distributed in altitude ?

It iscustomary to think of the magnetic field lines as electric equipotentials but the field-aligned
current isclosed in theionospher e so this cannot be the case in the lower ionosphere.
What arethe current closure pathsin the lower ionosphere ?

Under steady state conditionswe think of Poynting flux delivered to theionosphere asthe
electric field drivesthe neutral atmosphere. |If the electric field is subsequently reduced the
neutral wind could in principledrivetheions.
Arethere conditions under which electromagnetic energy isdelivered from the
ionospher e to the magnetosphere ?

Thereexist awide variety of spatial and temporal scalesfor the electric field and field-aligned
current in theionosphere.
Which spatial and temporal scales are most effectivein delivering electromagnetic
energy to theionosphere ?
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