Understanding data assimilation: how observations and a model are weaved into the analysis via statistics

Tomoko Matsuo NCAR

Thanks: Doug Nychka, Jeff Anderson, Kevin Raeder, Alain Caya, Art Richmond, Gang Lu ...

What is data assimilation?!

Combining Information

prior knowledge of the state of system

empirical or physical models (e.g. physical laws)

complete in space and time x

observations

directly measured or retrieved quantities incomplete in space and time y_0 **Bayes Theorem** "Bayesian statistics provides a coherent probabilistic framework for most DA approaches" [e.g., Lorenc, 1986]

prior knowledge $P(x) \sim N(x_f, \mathbf{P}_f)$ $x = x_f + \varepsilon_f$

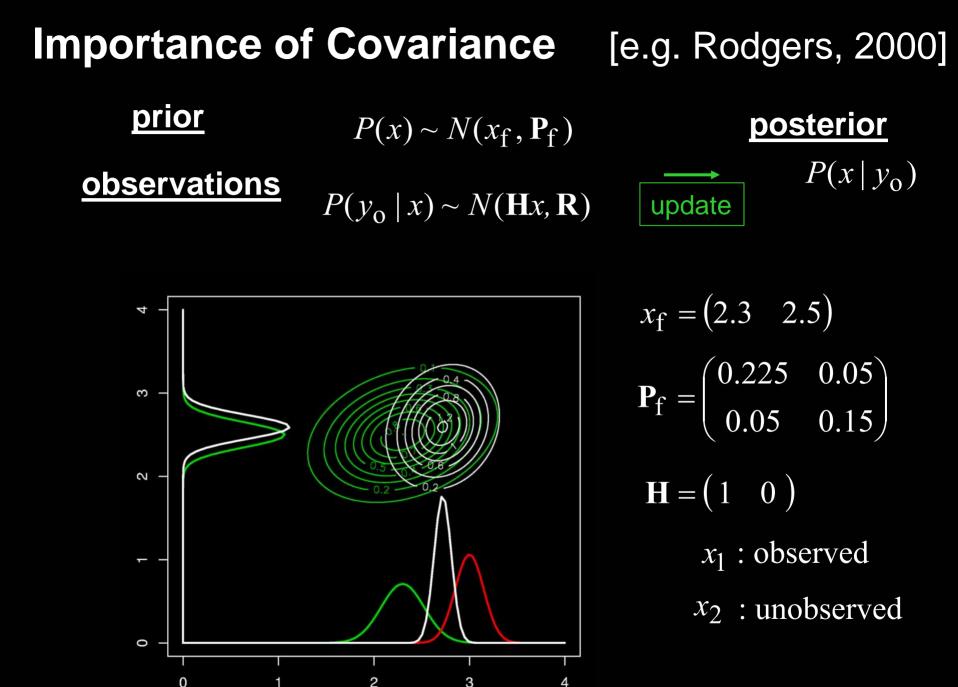
<u>observations</u> $P(y_0 | x) \sim N(H(x), \mathbf{R})$ $y_0 = H(x) + \varepsilon_0$ Note: observations y conditioned upon the state x

posterior

 $P(x \mid y_0) \propto P(y_0 \mid x)P(x)$

 $P(x \mid y_{o}) \sim N(x_{a}, \mathbf{P}_{a}) \qquad \text{H is linear}$ where $x_{a} = x_{f} + \mathbf{K}(y - \mathbf{H}x_{f})$ $\mathbf{P}_{a} = (\mathbf{I} - \mathbf{K}\mathbf{H})\mathbf{P}_{f}$

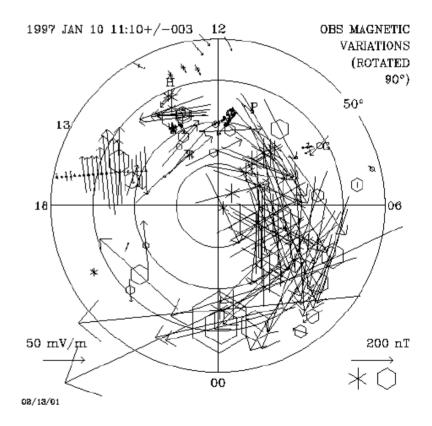
Assumption: Normal Distribution



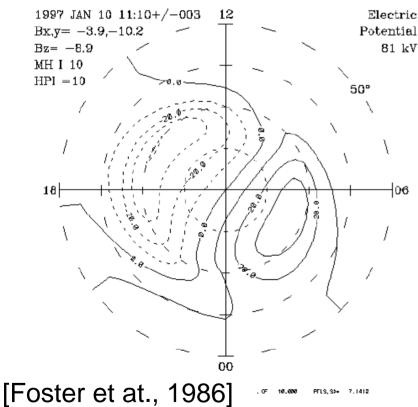
Assimilative Mapping of Ionospheric Electrodynamics [Richmond and Kamide, 1988]

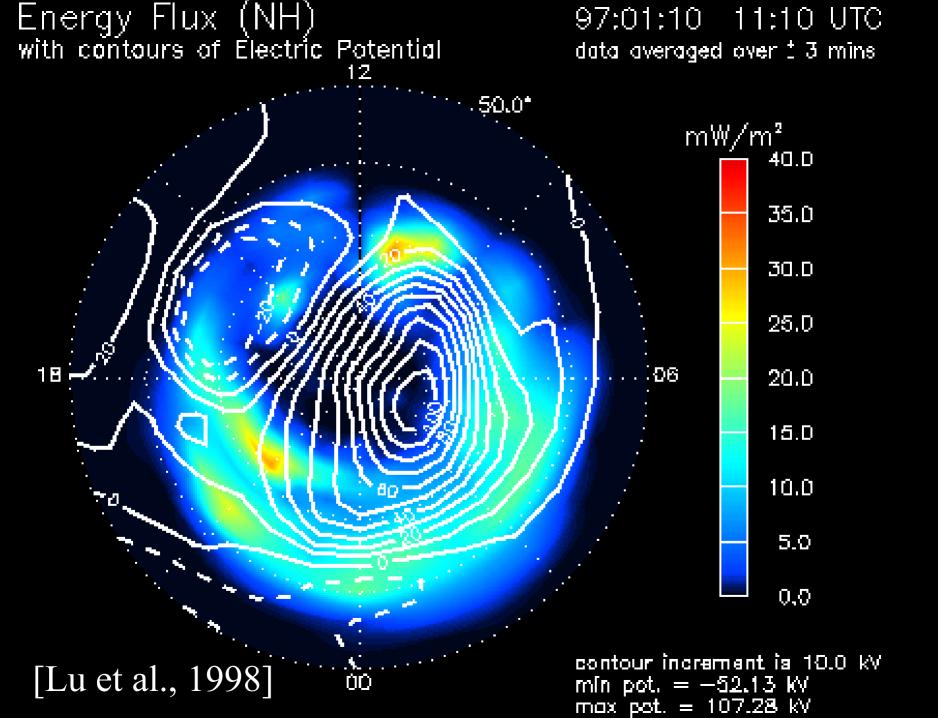
$$x_{\rm a} = x_{\rm b} + \mathbf{K}(y - \mathbf{H}x_{\rm b})$$

observations



prior knowledge

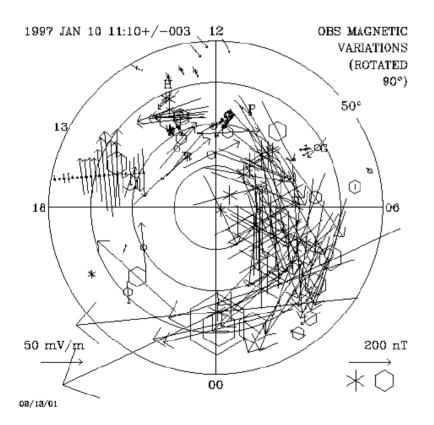


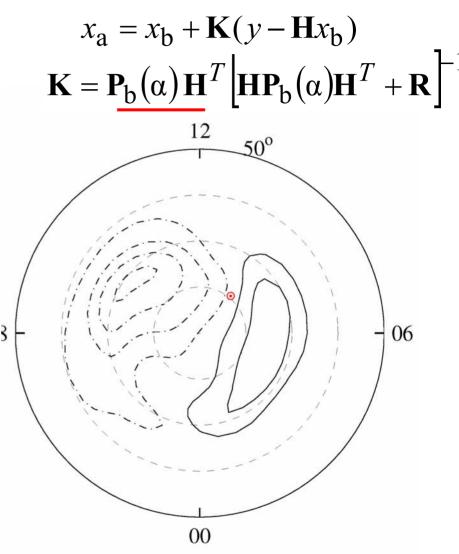


Inhomogeneous / anisotropic covariance

Adaptive Covariance Estimation Using Maximum likelihood Method [Dee 1995; Dee and da Saliva 1999] $x_0 = x_b + \mathbf{K}(v - \mathbf{H}x)$

observations





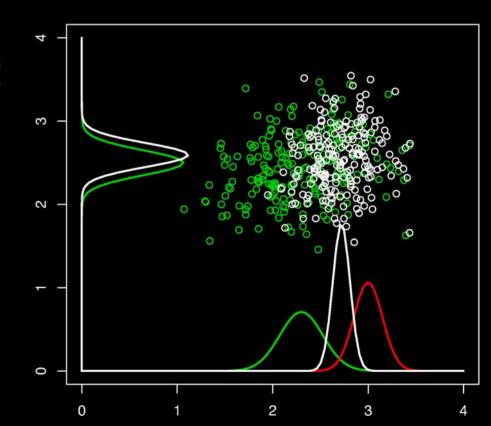
[Matsuo et at., 2002; 2005]

Use of Dynamics $x_{t+1} = M(x_t)$

$$\begin{array}{c|c}P(x_t \mid y_{t-1}, \ldots) & & \\\hline P(y_t \mid x_t) & & \\ \end{array} \begin{array}{c}P(x_t \mid y_t, y_{t-1}, \ldots) & & \\\hline \text{forecast} & & \\P(y_{t+1} \mid y_t, y_{t-1}, \ldots) & \\\hline P(y_{t+1} \mid x_{t+1}) & \\ \end{array}$$

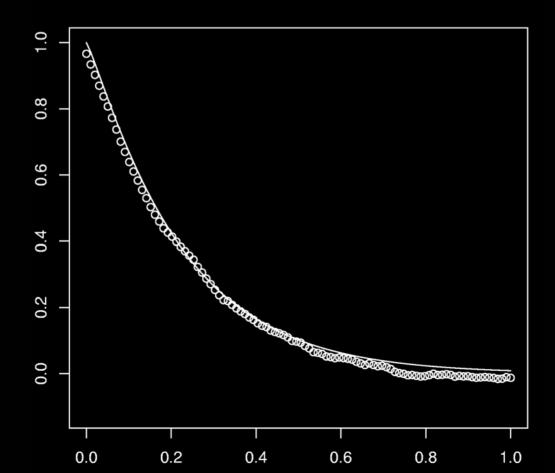
Ensemble Kalman Fllter Let's work with samples!

Challenge posed by the size of the covariance matrix (10¹² –10¹⁶)

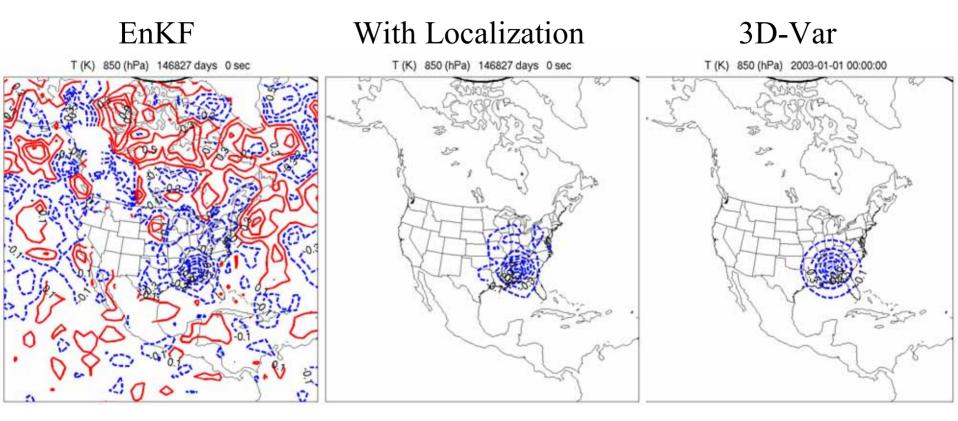


Issues with sampling error [e.g., Furrer and Bengtsson, 2005]

spurious correlations in the area of large lag distance.



EnKF v.s. 3D-Var comparisons [Caya et al., 2005] $x_a = x_f + \mathbf{K}(y - \mathbf{H}x_f)$



Issue with sampling error: covariance localization (tapering) is necessary to remove spurious correlations in the area far from observation location.

Summary

- Bayesian statistics as an overarching framework.
- By confronting a model with observations via first/second moment statistics, data assimilation
 - improves the state estimation.
 - provides a means to evaluate the quality of the model and the value of observations.
- Inhomogeneous and anisotropic covariance.
- Ensemble Kalman Filter does not require linearization of forward operator (H) and model (M), and has an advantage in capturing flow-dependent covariance structure.

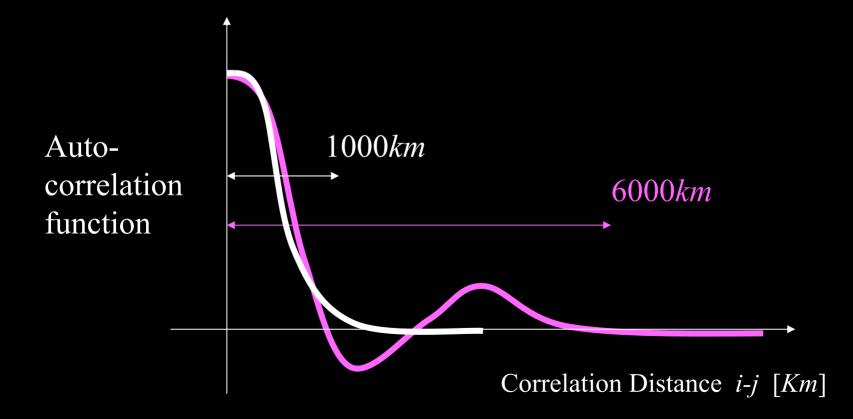
– See http://www.image.ucar.edu/DAReS/DART

Challenges and Future

- Observation is still sparse... (blessing?!)
- Dissipative system and strongly forced system in comparison with meteorological and oceanic systems.
 (forcing prediction is key to forecasting)
- Observing system design analysis or adaptive observation [e.g., Bishop et al., 2001]. (feedback to the design of observational campaigns)

Why is data assimilation in a data sparse region challenging?

Large Correlation Distance Inhomogeneous & Anisotropic



Adaptive covariance estimation using maximum likelihood method OI analysis: optimal estimation of α

$$\alpha_{a} = \mathbf{K}^{OI} \mathbf{y}', \text{ where } \mathbf{y}' = \mathbf{y}_{o} - \mathbf{H}(\mathbf{X}_{b})$$

$$\mathbf{K}^{OI} = [(\mathbf{EOF})^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{EOF} + \mathbf{P}_{b}^{-1}]^{-1} (\mathbf{EOF})^{\mathrm{T}} \mathbf{R}^{-1}$$

Background error covariance: Observational error covariance: $\mathbf{P}_{b} = \left\langle \alpha \cdot \alpha^{T} \right\rangle \qquad \qquad \mathbf{R} \approx \operatorname{diag}(\mathbf{R}) \approx f(\zeta_{3}, \zeta_{4}) \\
 \approx \operatorname{diag}(\mathbf{P}_{b})_{\nu\nu} \approx \zeta_{1} \nu^{-\zeta_{2}} \qquad \nu = 1, ..., 11$

<u>Maximum-likelihood method: optimal estimation of ζ </u>

Innovation covariance:

$$\langle \mathbf{y'} \cdot \mathbf{y'}^{\mathrm{T}} \rangle = \mathbf{R} + \mathbf{EOF} \mathbf{P}_{\mathrm{b}} (\mathbf{EOF})^{\mathrm{T}} \approx \mathbf{S} (\boldsymbol{\zeta}) \quad \{ \boldsymbol{\zeta}_{k} \mid k = 1 \rightarrow 4 \}$$

Cost function:

$$J(\zeta) = \log \det S(\zeta) + y'^{T} S^{-1}(\zeta) y'$$