

Energy as a global-scale diagnostic for MI coupling processes

Tuija I. Pulkkinen

IGPP / Los Alamos National Laboratory, NM Permanently at: Finnish Meteorological Institute, Helsinki, Finland

FINNISH METEOROLOGICAL INSTITUTE

Outline

Introduction to energy coupling

- Observational parameters
- Correlation studies

Introduction to MHD simulations

- GUMICS-4 global simulation
- Tracing energy in a simulation
- Analysis methods
- Relationship of energy transfer and reconnection

Results of simulation runs

- Magnetopause energy transfer
- Tail reconnection
- Ionospheric energy dissipation

Implications to MI coupling

- Role of dynamic pressure
- Substorm energetics

IMF control of substorm activity

Proxy for energy input:

• Epsilon-parameter $\epsilon = (4\pi/\mu_0) v B^2 I_0^2 sin^4(\theta/2)$

Proxy for auroral-latitude energy dissipation:

• AL index

Energy input - output correlation

Estimate of energy dissipation in the ionosphere:

- Determine substorm onset and end of recovery phase times
- Integrate over time
 - Epsilon
 - AL

Energy input - output correlation

IMF control of ²⁰ ring current activity ¹⁰

Proxy for energy input:

• Solar wind $E_{\gamma} = VB_s$

Proxy for ring current energy content:

• Mid-latitude Dst-index

Burton formulation: $d\text{Dst}^*/dt = Q(E_Y) - \text{Dst}^*/\tau (E_Y)$

Storm: April 6, 2000 20 Bz [nT] WIND 10 -20 800 V [km/s] 700 600 500 400 150 Vth [km/s] 100 50 40 P [nPa] 30 ₿ 20 10Ē 100 0 -100 -200 _300 ₽ Dst [nT] 24 12 16 20 04 08 12 Time [Hours]

Importance of global modeling

- We want to trace the flow of energy, mass, and momentum from the Sun and the solar wind through the magnetosphere ionosphere system
- Global observations almost non-existent
 - various proxies are available
- Global model results can be used to
 - compute global quantitites of energy and mass flow
 - compare with observational proxies

GUMICS-4: A global MHD simulation

Magnetopause location

Automatic detection by using cavity carved by solar wind flow lines

 Agrees with previous definitions (current density, open-closed boundary)

Poynting flux flow lines

Energy and mass transfer through magnetopause

Total energy flux K: $E_{s} = \int dA \mathbf{K} \cdot \mathbf{n}$

Mass flux ρV : $\rho V_{s} = \int dA \rho V \cdot \mathbf{n}$

Storm: April 6, 2000

(Palmroth et al., 2003)

Energy through magnetopause: Comparison with empirical proxy

Energy input (Akasofu, 1981): $\epsilon = (4\pi/\mu_0)vB^2 I_0^2 \sin^4(\theta/2)$

- scale *I*₀ selected to equal inner 100 magnetosphere dissipation
- ε need not be same as total energy flux through boundary

Reconnection in GUMICS-4

Different field line topologies

• Four distinct field line regions meet at the X-line

Different field line topologies

Field lines in the magnetosphere:

- Free
- Closed
- Open, Toward Earth
- Open, Away from Earth

Identifying reconnection

Traditional measure parallel electric field not optimal:

• Ideal MHD has no parallel electric fields

 $E = -v \times B; E_{||} = 0$

- **E**_{II} depends on resistivity not well understood in space plasmas
- Gradients at the X-line are large and numerical effects from discretization in simulations may be significant

Look for characterizations not localized to the X-line:

• Reconnection occurs where all four types of field lines are found

Reconnection sites

Colored lines:

 Locations where four field line topologies are found within three grid points

Green thin line:

 Tail X-line as identified from Bx reversal

Reconnection definitions agree

Dayside reconnection sites follow IMF direction

Association of reconnection and energy conversion

Sweet - Parker model:

 Inside diffusion region Poynting vector divergence

$$\nabla \cdot \mathbf{S} = - \frac{V_{Ai}B_i^2}{\mu_0 L}$$

 gives conversion from magnetic to plasma energy

Energy conversion in the tail

Sweet - Parker -like reconnection in tail

 Magnetic annihilation surface density:

$$\sigma_{ann} = \int \nabla \cdot \mathbf{S} \, dl$$

 line integral across the diffusion region along the current sheet normal

Energy conversion at magnetopause ko 1.15

Southward IMF:

- Strong magnetic annihilation at the nose (blue)
- Flux creation behind cusps (red)

Northward IMF:

 Only weak annihilation behind cusps

(Laitinen et al., 2006)

klo 4.15

klo 6.30

Energy conversion at magnetopause

Reconnection power

 Volume integral of Poynting flux divergence

$$P_{rec} = \int \nabla \cdot \mathbf{S} \, dV$$

Annihilation at nose, dynamo behind cusps

- blue: reconnection power, X > 5
- red: dynamo power, 0 < X < 5

Energy conversion in magnetotail

Reconnection power

 Volume integral of Poynting flux divergence
P_{rec} = ∫∇·S dV

Reconnection drivers

- Pressure magnitude
- IMF orientation
- |B| has weaker effect
- Similar behavior at magnetopause and in tail

Ionospheric energy dissipation

GUMICS-4 Joule heating:

 $\mathsf{P}_{\mathsf{JH}} = \int \mathbf{E} \cdot \mathbf{J} \ dS = \int \Sigma_{\mathsf{P}} E^2 dS$

 Ionospheric electric field and conductivity

GUMICS-4 precipitation:

 $P_{PR} = \int (2/\pi m_e)^{1/2} n_e T_e^{3/2} dS$

 Magnetospheric temperature and density

Joule heating

Precipitation energy

Ionospheric energy dissipation: Comparison with empirical proxy

Joule heat (Ahn et al., 1983): P_{JH} = 2 · 1.9 · 10⁸ · AE

Precipitation (**Ostgaard et al., 2002**): $P_{PR} = 2 \cdot 10^9 (4.4 \cdot AL^{1/2} - 7.6)$

Storm: April 6, 2000

Ionospheric energy dissipation: Comparison with empirical proxy

Joule heat (Ahn et al., 1983): P_{JH} = 2 · 1.9 · 10⁸ · AE

Precipitation (**Ostgaard et al., 2002**): $P_{PR} = 2 \cdot 10^9 (4.4 \cdot AL^{1/2} - 7.6)$

lonospheric energy dissipation

- Joule heating and particle precipitation
- Driven by frontside reconnection (IMF Bz)
- Rate controlled by Psw

R1 and R2 field-aligned currents: solar wind pressure dependence

- Pressure controls size of magnetosphere and Chapman-Ferraro currents
- Chapman-Ferraro currents are linked to R1 currents
- R1 currents are linked to R2 currents

Ionospheric Joule heating: R1 and R2 dependence

- R1 currents close across polar cap
- R1 and R2 currents close across auroral oval
- Joule heating increases quadratically with increasing current (*P_{JH}* ~ E·J ~ J²/σ)

(Palmroth et al., 2004)

Ionospheric Joule heating: solar wind pressure dependence

- Solar wind pressure linearly correlated with ionospheric Joule heating
- Linear dependence different for Bz > 0 and Bz < 0

Ionospheric Joule heating: solar wind pressure dependence

- Solar wind pressure correlated with ionospheric Joule heating
- Dependence different for Bz > 0 and Bz < 0

Ionospheric energy dissipation: Comparison with empirical proxy

Joule heat (Ahn et al., 1983): P_{JH} = 2 · 1.9 · 10⁸ · AE

Precipitation (**Ostgaard et al., 2002**): $P_{PR} = 2 \cdot 10^9 (4.4 \cdot AL^{1/2} - 7.6)$

Power input: dependence on internal processes

Energy input to the magnetosphere - ionosphere:

- After quiet period:
 - Epsilon (or VB_Z) increase enhances energy input through magnetopause
- After previous driving:
 - Energy input continues even if Epsilon (or VB_Z) decreases

Ionospheric dissipation: direct dependence on energy input

Epsilon vs.

ionospheric dissipation:

- Storage release or
- Loading unloading

Magnetopause input vs. ionospheric dissipation

• Direct driving

(Pulkkinen et al., 2006)

Interpretation to substorm dynamics

Epsilon vs. ionospheric dissipation:

- Storage release or
- Loading unloading

Magnetopause energy input vs ionospheric dissipation

• Direct driving

Effect of internal state

- Already at magnetopause!
- Not obtainable from observations!

Poynting flux focussing

Summary and conclusions

Energy coupling

 Key to understanding reconnection and dynamics

MHD simulations

- Energy through magnetopause
- Energy conversion in tail follows energy input
- Energy dissipation in ionosphere follows energy input
- Poynting flux divergence couples reconnection and energy transport

Simulation results

- Component merging at magnetopause
- Poynting flux focusses in tail

Implications to MI coupling

- Pressure dependence on ionospheric Joule heating
- Ionospheric dissipation driven by solar wind input, which does not directly scale with epsilon