The Physics of Field-Aligned Currents

Andrew N. Wright

UNIVERSITY OF ST ANDREWS

Magnetospheric Current Circuit

There is a rich structure of currents flowing parallel (j_{\parallel}) and perpendicular (\mathbf{j}_{\perp}) to the magnetic field (\mathbf{B}) .

- Magnetopause current
- Ring current
- Ionospheric currents

[Figure from NASA GSFC.]

- Region 1 and 2 currents
- ULF Alfvén waves

View from tail

Quasi-Neutrality and Current Continuity

• The Ampère-Maxwell equation states

$$\mathbf{\nabla} \times \mathbf{B}/\mu_0 = \mathbf{j} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}.$$

• Taking the divergence yields

$$0 = \mathbf{\nabla} \cdot \mathbf{j} + \varepsilon_0 \frac{\partial \mathbf{\nabla} \cdot \mathbf{E}}{\partial t}.$$

• Using Gauss's Law, $\nabla \cdot \mathbf{E} = \rho^*/\varepsilon_0$ (where ρ^* = net charge density) we find

$$\nabla \cdot \mathbf{j} + \frac{\partial \rho^*}{\partial t} = 0.$$

- Quasi-neutrality $(\rho^* \approx 0) \Rightarrow$
 - $\mathbf{O} \mathbf{\nabla} \cdot \mathbf{j} \approx 0$: Currents are self-closing.
 - The displacement current $(\varepsilon_0 \partial \mathbf{E}/\partial t)$ is neglected.
 - O $\rho^* \approx 0$ means $(n_e n_i)/n_e \ll 1$.
 - O Debye length is $\sqrt{\varepsilon_0 k T_e/e^2 n_e} \sim 100$ m (magnetosphere), 0.01 m (ionosphere).

Some Magnetohydrodynamic Driving Mechanisms

• Imposed velocity shear [Rönnmark, GRL, 1998]

- Fundamental standing (ULF)
 Alfvén wave
- Axisymmetric oscillation of magnetic shells
- b_{ϕ} and u_{ϕ} components only
- j_{\parallel} and j_{\perp} currents

Generation of j_{\parallel} (MHD description)

• Single fluid MHD momentum equation

$$\rho \frac{\mathrm{d}\mathbf{v}}{\mathrm{dt}} = \mathbf{j} \times \mathbf{B} - \nabla p + \mathbf{F}$$

• Solve for \mathbf{j}_{\perp}

$$\mathbf{j}_{\perp} = -\left(
ho \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} + \mathbf{\nabla}p - \mathbf{F}\right) \times \frac{\mathbf{B}}{B^2}$$

• Since $\nabla \cdot \mathbf{j} = 0$ we find j_{\parallel}

$$\frac{\partial j_{\parallel}}{\partial s} + \nabla_{\perp} \cdot \mathbf{j}_{\perp} = 0, \qquad \Rightarrow \qquad j_{\parallel} = -\int_{\text{along B}} \nabla_{\perp} \cdot \mathbf{j}_{\perp} ds$$

• The field-aligned current (j_{\parallel}) flows to maintain quasi-neutrality $(\rho^* \approx 0)$

What is j_{\parallel} microscopically?

- Net drift of charged particles parallel to **B**
- Consider the parallel component of the equation of motion for a charged particle (uniform B),

$$\frac{\mathrm{d}v_{\parallel}}{\mathrm{dt}} = \frac{qE_{\parallel}}{m}.$$

 E_{\parallel} can be used to establish a field-aligned current.

- Since $m_e/m_i \ll 1$ the electrons are more mobile, and carry most of the parallel current: $j_{\parallel} \approx \sum -ev_{e\parallel}$
- In MHD $m_e/m_i \to 0$: electrons are represented by a massless charge-neutralizing fluid $(E_{\parallel} \to 0)$
- To generate j_{\parallel} requires E_{\parallel}
 - O How does E_{\parallel} arise?
 - O Causal interpretation in ideal MHD difficult since $\partial \mathbf{E}/\partial t$ has been neglected

Guiding centre description of particle motion

- Particles execute a circular trajectory about **B** whose centre drifts. Valid when
 - Gyroradius ≪ background scale length
 - Gyroperiod ≪ background timescale
- Guiding centre drifts parallel to **B** arise from
 - \circ E_{\parallel} and magnetic mirror force

$$m\frac{\mathrm{d}v_{\parallel}}{\mathrm{dt}} = qE_{\parallel} + \mu\nabla_{\parallel}B$$

- The magnetic moment $\mu = mv_{\perp}^2/2B$ is a constant of motion.
- ullet Guiding centre drifts perpendicular to ${\bf B}$ (can depend upon q,m and energy) arise from
 - O Grad B drift
 - O B curvature drift
 - \bigcirc Polarization drift (**E**(t))
 - \bigcirc **E** \times **B** drift

Generation of j_{\parallel} (particle description)

- In general, given $\mathbf{E}(\mathbf{r},t)$ and $\mathbf{B}(\mathbf{r},t)$, electrons and ions drift relative to one another \Rightarrow
 - O current can flow
 - O net charge density is likely to develop $\rho^* \neq 0$
- As ρ^* becomes non-zero, E_{\parallel} and \mathbf{E}_{\perp} change to satisfy

$$\nabla \cdot \mathbf{E} = \rho^*/\varepsilon_0$$

and influence the particle motion

- Effect of even a small E_{\parallel} :
 - O electrons are accelerated parallel to **B**
 - $\circ j_{\parallel}$ is established
 - O parallel electron motion acts to reduce ρ^*
 - O the plasma remains quasi-neutral ($\rho^* \approx 0$)
- Interestingly, **E** still satisfies

$$\nabla \times \mathbf{B}/\mu_0 = \mathbf{j} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t},$$

even though the last term is still negligible.

Ring Current and Standing Alfvén Wave j_{\parallel}

- Looking earthward from the tail
- Warm ion cloud drifts westward
- Slight charge imbalance generates **E**, electron motion and j_{\parallel}
- Snapshot of Alfvén wave current circuit
- $\mathbf{E}(t)$ in equatorial region produces polarization drift
- Ions drift across L-shells leading to charge imbalance and subsequent j_{\parallel}

Magnetosphere-Ionosphere Equilibrium Near the Earth

- A simple equilibrium has a total ion number density comprising:
 - O constant magnetospheric contribution ($n_M \sim 1 \text{ cm}^{-3}$)
 - O exponentially decreasing ionospheric contribution ($n_I \sim 10^4 10^6 \, \mathrm{cm}^{-3}$, scale height $\sim 100 200 \, \mathrm{km}$)

- If $n = n_I + n_M$ and **B** is dipolar, B/n has a peak at a few thousand km altitude
 - O below B/n peak: $B/n \sim \exp(+r/h)$
 - O above B/n peak: $B/n \sim 1/r^3$ First Prev Next Last Go Back Full Screen Close Qu

Upward and Downward Currents and the Auroral Acceleration Region

- Upward Current:
 - O magnetospheric electrons precepitated ⇒ visible aurora
- Downward Current:
 - O ionospheric electrons evacuated to magnetosphere
- Current-Voltage (energy) relations for upward and downward currents?

[Marklund et al., Nature, 2001.]

Gyrotropic Electron Vlasov Equation: $f(s, v_{\parallel}, v_{\perp}, t)$

• Retains information of ionospheric and magnetospheric electron populations

$$\frac{\partial f}{\partial t} + v_{\parallel} \frac{\partial f}{\partial s} - \left(\frac{eE_{\parallel}}{m_e} + \frac{v_{\perp}^2}{2B} \cdot \frac{\partial B}{\partial s} \right) \frac{\partial f}{\partial v_{\parallel}} + \frac{v_{\parallel} v_{\perp}}{2B} \cdot \frac{\partial B}{\partial s} \cdot \frac{\partial f}{\partial v_{\perp}} = 0$$

s =field-aligned coordinate.

- For a steady current $\mathbf{E} = -\nabla \phi \Rightarrow E_{\parallel} = -\partial \phi/\partial s$. Constants of motion are
 - O total energy: $W = \frac{1}{2}m_e v^2 e\phi$
 - O magnetic moment: $\mu = m_e v_{\perp}^2 / 2B$
- Solve for $f(s, v_{\parallel}, v_{\perp})$ with $v_{\parallel}(W, \mu), \ v_{\perp}(W, \mu)$
 - \bigcirc Liouville's Theorem (f is constant along an electron trajectory)
 - $oldsymbol{n} n_e = n_i \Rightarrow \phi(s)$ and

$$j_{\parallel} = -e \int v_{\parallel} f \mathrm{d}^3 v$$

• Solution relates current flow to potential drop along the field line

Upward Current (downgoing electrons)

- Assuming a potential drop ϕ_m : map magnetospheric electrons down to the ionosphere using W and μ to identify the loss cone.
- Calculate j_{\parallel} at the ionosphere in terms of ϕ_m :

$$j_{\parallel} \approx n_0 e \sqrt{\frac{kT}{2\pi m_e}} \left(1 - \frac{e\phi_m}{kT} \right)$$

The "Knight" relation [Planet. Space Sci., 1973].

- Useful for interpreting data (electron energies)
- Good for incorporating in global modelels
- O Knight's solution says little about quasi-neutrality or $\phi(s)$ variation
- \odot E_{\parallel} needed to overcome mirror force
- O Where does acceleration occur?

Upward Current Quasi-Neutral Solution

• Quasi-neutral solution for previous B/n variation gives [Cran-McGreehin, 2006]

- Plots of normalized potential and E_{\parallel} along **B**. (Ionosphere at s=0)
- Below B/n peak, ambipolar E_{\parallel} traps ionospheric electrons
- Above B/n peak, E_{\parallel}
 - O helps precitating electrons overcome the mirror force
 - O adjust mirroring magnetospheric electrons to maintain quasi-neutrality

Downward Current (upgoing electrons)

• Some ionospheric electrons are accelerated upward into the magnetosphere

- ullet Field-aligned coordinate is ℓ . Important locations are
 - O ℓ_p : location of the B/n peak
 - \bigcirc $\hat{\ell_c}$: ionospheric electron trapping point/beam emergence height

Downward Current Quasi-Neutral Solution

• Quasi-neutral solution for previous B/n variation gives [Cran-McGreehin and Wright, JGR, 2005a,b]

- Plots of normalized potential and E_{\parallel} along **B**. (Ionosphere at s=0)
- ullet Electron acceleration is centred around the B/n peak
- Ionospheric j_{\parallel} of $\sim \mu {\rm Am}^{-2}$ correspond to potential drops along **B** of \sim keV

Analytical Current-Voltage Relation (Downward Current)

• The potential drop (ϕ_m) depends upon j_{\parallel} and n at the B/n peak, as well as the magnetospheric electron temperature (T) [Cran-McGreehin and Wright, JGR, 2005b]

O If $j_{\parallel n}^2 m_e / 2kT n_p^2 e^2 < 1.7$ then

$$-\phi_m \approx \frac{3}{2} \left(\frac{j_{\parallel p}^2 m_e^{1/2} kT}{n_p e^{5/2}} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{j_{\parallel p}^4 m_e^2 kT}{n_p^4 e^7} \right)^{\frac{1}{3}} + \frac{j_{\parallel p}^2 m_e}{6n_p^2 e^3}$$

O If $j_{\parallel n}^2 m_e / 2kT n_p^2 e^2 > 1.7$ then

$$-\phi_m \approx \frac{kT}{e} \ln \left(\frac{j_{\parallel p}^2 m_e}{n_p^2 e^2 kT} \right) + \frac{j_{\parallel p}^2 m_e}{2n_p^2 e^3} + \frac{kT}{e}$$

- Approximations accurate to at least 5%
- May only need one or two terms

Conclusion and Summary

- Field aligned currents
 - O are an integral part of the magnetosphere
 - O arise from both large scale driving and internal particle drifts
 - O carried mainly by electrons (accelerated by E_{\parallel})
- Downgoing electrons excite the aurora
- Details of $\phi(s)$ and $E_{\parallel}(s)$ are different for upward and downward currents (but B/n peak location is important)
- Analytical Current-Voltage relations available

Future Work

- Allow ions to move and modify background density
- Address time-dependence
- Combine large and small scale physics of acceleration region (FAST)
- Other acceleration mechanisms (wave-particle interactions?)
- Interpret with governing equations