The Physics of Field-Aligned Currents

Andrew N. Wright UNIVERSITY OF ST ANDREWS

Magnetospheric Current Circuit

There is a rich structure of currents flowing parallel (j_{\parallel}) and perpendicular (\mathbf{j}_{\perp}) to the magnetic field (**B**).

- Magnetopause current
- **Ring current**
- Ionospheric currents

● Region 1 and 2 currents **• ULF Alfvén waves**

View from tail

Quasi-Neutrality and Current Continuity

• The Ampère-Maxwell equation states

$$
\nabla \times \mathbf{B}/\mu_0 = \mathbf{j} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}.
$$

• Taking the divergence yields

$$
0 = \nabla \cdot \mathbf{j} + \varepsilon_0 \frac{\partial \nabla \cdot \mathbf{E}}{\partial t}.
$$

• Using Gauss's Law, $\nabla \cdot \mathbf{E} = \rho^* / \varepsilon_0$ (where ρ^* = net charge density) we find

$$
\nabla \cdot \mathbf{j} + \frac{\partial \rho^*}{\partial t} = 0.
$$

- Quasi-neutrality $(\rho^* \approx 0) \Rightarrow$
	- $\overline{Q} \cdot \mathbf{j} \approx 0$: Currents are self-closing.
	- ❍ The displacement current (ε0∂**E**/∂t) is neglected.
	- $\bigcirc \rho^* \approx 0$ means $(n_e n_i)/n_e \ll 1$.
	- Debye length is $\sqrt{\varepsilon_0 kT_e/e^2 n_e}$ ∼ 100 m (magnetosphere), 0.01 m (ionosphere).

Some Magnetohydrodynamic Driving Mechanisms

Imposed velocity shear [*Rönnmark*, GRL, 1998]

- Fundamental standing (ULF) Alfvén wave
- Axisymmetric oscillation of magnetic shells
- \bullet b_{ϕ} and u_{ϕ} components only
- \bullet j_{||} and j_⊥ currents

Generation of j_{\parallel} (MHD description)

● Single fluid MHD momentum equation

$$
\rho \frac{\mathrm{d} \mathbf{v}}{\mathrm{d} \mathbf{t}} = \mathbf{j} \times \mathbf{B} - \mathbf{\nabla} p + \mathbf{F}
$$

● Solve for **j**[⊥]

$$
\mathbf{j}_{\perp} = -\left(\rho \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} + \mathbf{\nabla}p - \mathbf{F}\right) \times \frac{\mathbf{B}}{B^2}
$$

• Since $\nabla \cdot \mathbf{j} = 0$ we find j_{\parallel}

$$
\frac{\partial j_{\parallel}}{\partial s} + \mathbf{\nabla}_{\perp} \cdot \mathbf{j}_{\perp} = 0, \qquad \Rightarrow \qquad j_{\parallel} = - \int_{\text{along } \mathbf{B}} \mathbf{\nabla}_{\perp} \cdot \mathbf{j}_{\perp} \text{ds}
$$

• The field-aligned current (j_{\parallel}) flows to maintain quasi-neutrality $(\rho^* \approx 0)$

What is j_{\parallel} **microscopically?**

- Net drift of charged particles parallel to **B**
- Consider the parallel component of the equation of motion for a charged particle (uniform **B**),

$$
\frac{\mathrm{d}v_{\parallel}}{\mathrm{d}t} = \frac{qE_{\parallel}}{m}.
$$

 E_{\parallel} can be used to establish a field-aligned current.

- Since $m_e/m_i \ll 1$ the electrons are more mobile, and carry most of the parallel current: $j_{\parallel} \approx \sum -ev_{e\parallel}$
- In MHD $m_e/m_i \rightarrow 0$: electrons are represented by a massless charge-neutralizing fluid $(E_{\parallel} \rightarrow 0)$
- \bullet To generate j_{\parallel} requires E_{\parallel}
	- \bigcirc How does E_{\parallel} arise?
	- ❍ Causal interpretation in ideal MHD difficult since ∂**E**/∂t has been neglected

Guiding centre description of particle motion

● Particles execute a circular trajectory about **B** whose centre drifts. Valid when

- \bigcirc Gyroradius \ll background scale length
- \bigcirc Gyroperiod \ll background timescale
- Guiding centre drifts parallel to **B** arise from
	- \circ E_{||} and magnetic mirror force

$$
m\frac{\mathrm{d}v_{\parallel}}{\mathrm{d}t} = qE_{\parallel} + \mu \nabla_{\parallel}B
$$

O The magnetic moment $\mu = mv_{\perp}^2/2B$ is a constant of motion.

• Guiding centre drifts perpendicular to **B** (can depend upon q , m and energy) arise from

- \bigcirc Grad B drift
- \bigcirc B curvature drift
- \bigcirc Polarization drift $(E(t))$
- \bigcirc **E** \times **B** drift

Generation of j_{\parallel} (particle description)

- \bullet In general, given $\mathbf{E}(\mathbf{r}, t)$ and $\mathbf{B}(\mathbf{r}, t)$, electrons and ions drift relative to one another \Rightarrow
	- ❍ current can flow
	- \bigcirc net charge density is likely to develop $\rho^* \neq 0$
- As ρ^* becomes non-zero, E_{\parallel} and **E**_⊥ change to satisfy

$$
\nabla \cdot \mathbf{E} = \rho^* / \varepsilon_0
$$

and influence the particle motion

- Effect of even a small E_{\parallel} :
	- ❍ electrons are accelerated parallel to **B**
	- \bigcirc j_{\parallel} is established
	- \bigcirc parallel electron motion acts to reduce ρ^*
	- \bigcirc the plasma remains quasi-neutral $(\rho^* \approx 0)$
- Interestingly, **E** still satisfies

$$
\nabla \times \mathbf{B}/\mu_0 = \mathbf{j} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t},
$$

even though the last term is still negligible.

Ring Current and Standing Alfvén Wave j_{\parallel}

- Looking earthward from the tail
- Warm ion cloud drifts westward
- Slight charge imbalance generates **E**, electron motion and j_{\parallel}

- Snapshot of Alfvén wave current circuit
- **in equatorial region produces polariz**ation drift
- Ions drift across L -shells leading to charge imbalance and subsequent j_{\parallel}

Magnetosphere-Ionosphere Equilibrium Near the Earth

- A simple equilibrium has a total ion number density comprising:
	- \bigcirc constant magnetospheric contribution ($n_M \sim 1~{\rm cm}^{-3}$)
	- \bigcirc exponentially decreasing ionospheric contribution ($n_I \sim 10^4 10^6 \,\text{cm}^{-3}$, scale height $\sim 100 - 200$ km)

• If $n = n_I + n_M$ and **B** is dipolar, B/n has a peak at a few thousand km altitude \bigcirc below B/n peak: $B/n \sim \exp(+r/h)$ \bigcirc above B/n peak: $B/n \sim 1/r^3$

Upward and Downward Currents and the Auroral Acceleration Region

- Upward Current:
	- ❍ magnetospheric electrons precepitated \Rightarrow visible aurora
- Downward Current:
	- ❍ ionospheric electrons evacuated to magnetosphere
- Current-Voltage (energy) relations for upward and downward currents?

[Marklund *et al., Nature*, 2001.]

Gyrotropic Electron Vlasov Equation: $f(s, v_{\parallel}, v_{\perp}, t)$

● Retains information of ionospheric and magnetospheric electron populations

$$
\frac{\partial f}{\partial t} + v_{\parallel} \frac{\partial f}{\partial s} - \left(\frac{eE_{\parallel}}{m_e} + \frac{v_{\perp}^2}{2B} \cdot \frac{\partial B}{\partial s} \right) \frac{\partial f}{\partial v_{\parallel}} + \frac{v_{\parallel} v_{\perp}}{2B} \cdot \frac{\partial B}{\partial s} \cdot \frac{\partial f}{\partial v_{\perp}} = 0
$$

 $s =$ field-aligned coordinate.

- For a steady current $\mathbf{E} = -\nabla \phi \Rightarrow E_{\parallel} = -\partial \phi / \partial s$. Constants of motion are O total energy: $W = \frac{1}{2} m_e v^2 - e \phi$ \bigcirc magnetic moment: $\mu = m_e v_\perp^2$ $_{\perp}^2/2B$
- Solve for $f(s, v_{\parallel}, v_{\perp})$ with $v_{\parallel}(W, \mu), v_{\perp}(W, \mu)$

 \circ Liouville's Theorem (f is constant along an electron trajectory) $\overline{O} n_e = n_i \Rightarrow \phi(s)$ and

$$
j_\parallel = -e \int v_\parallel f {\rm d}^3 v
$$

• Solution relates current flow to potential drop along the field line

Upward Current (downgoing electrons)

- Assuming a potential drop ϕ_m : map magnetospheric electrons down to the ionosphere using W and μ to identify the loss cone.
- Calculate j_{\parallel} at the ionosphere in terms of ϕ_m :

$$
j_{\parallel} \approx n_0 e \sqrt{\frac{kT}{2\pi m_e}} \left(1 - \frac{e\phi_m}{kT} \right)
$$

The "Knight" relation [*Planet. Space Sci.*, 1973].

- ❍ Useful for interpreting data (electron energies)
- ❍ Good for incorporating in global modelels
- \circ Knight's solution says little about quasi-neutrality or $\phi(s)$ variation
- $\bigcirc E_{\parallel}$ needed to overcome mirror force
- ❍ Where does acceleration occur?

Upward Current Quasi-Neutral Solution

● Quasi-neutral solution for previous B/n variation gives [*Cran-McGreehin*, 2006]

- Plots of normalized potential and E_{\parallel} along **B**. (Ionosphere at $s = 0$)
- Below B/n peak, ambipolar E_{\parallel} traps ionospheric electrons
- \bullet Above B/n peak, E_{\parallel}
	- ❍ helps precitating electrons overcome the mirror force
	- ❍ adjust mirroring magnetospheric electrons to maintain quasi-neutrality

Downward Current (upgoing electrons)

• Some ionospheric electrons are accelerated upward into the magnetosphere

- \bullet Field-aligned coordinate is ℓ . Important locations are
	- $\bigcirc \ell_n$: location of the B/n peak
	- $\bigcirc \ell_c$: ionospheric electron trapping point/beam emergence height

Downward Current Quasi-Neutral Solution

● Quasi-neutral solution for previous B/n variation gives [*Cran-McGreehin and Wright*, JGR, 2005a,b]

- \bullet Plots of normalized potential and E_{\parallel} along **B**. (Ionosphere at $s = 0$)
- Electron acceleration is centred around the B/n peak
- \bullet Ionospheric j_{\parallel} of $\sim \mu \text{Am}^{-2}$ correspond to potential drops along **B** of \sim keV

Analytical Current-Voltage Relation (Downward Current)

• The potential drop (ϕ_m) depends upon j_{\parallel} and n at the B/n peak, as well as the magnetospheric electron temperature (T) [*Cran-McGreehin and Wright*, JGR, 2005b]

 \supset If $j_{\parallel p}^2 m_e/2kT n_p^2 e^2 < 1.7$ then

$$
-\phi_m \approx \frac{3}{2} \left(\frac{j_{\parallel p}^2 m_e^{1/2} k T}{n_p e^{5/2}} \right)^{\frac{2}{3}} + \frac{1}{2} \left(\frac{j_{\parallel p}^4 m_e^2 k T}{n_p^4 e^7} \right)^{\frac{1}{3}} + \frac{j_{\parallel p}^2 m_e}{6 n_p^2 e^3}
$$

 \supset If $j_{\parallel p}^2 m_e/2kT n_p^2 e^2 > 1.7$ then

$$
-\phi_m \approx \frac{kT}{e} \ln \left(\frac{j_{\parallel p}^2 m_e}{n_p^2 e^2 kT} \right) + \frac{j_{\parallel p}^2 m_e}{2n_p^2 e^3} + \frac{kT}{e}
$$

- Approximations accurate to at least 5%
- May only need one or two terms

Conclusion and Summary

- Field aligned currents
	- ❍ are an integral part of the magnetosphere
	- ❍ arise from both large scale driving and internal particle drifts
	- \circ carried mainly by electrons (accelerated by E_{\parallel})
- Downgoing electrons excite the aurora
- Details of $\phi(s)$ and $E_{\parallel}(s)$ are different for upward and downward currents (but B/n peak location is important)
- Analytical Current-Voltage relations available

Future Work

- Allow ions to move and modify background density
- Address time-dependence
- Combine large and small scale physics of acceleration region (FAST)
- Other acceleration mechanisms (wave-particle interactions?)
- Interpret with governing equations