2007 GEM student tutorial

### Radiation Belt Part II



Chia-Lin Huang, Boston University, MA

# Highly structured and dynamic outer electron belt



Geoff Reeves

Chia-Lin Huang

# **Outstanding questions**

- Which physical processes produce radiation belt enhancement events?
- What are the dominant mechanisms for relativistic electron loss?
- How does the inner magnetospheric
   plasma environment
   control radiation belt
   acceleration/loss?



## Outline

- What are they talking about?
- What are they fighting for?
- Why is it so hard?
- What would help?
- Breakout sessions
- Student sponsored tutorial

### What are they talking about? (1)

- Adiabatic and non-adiabatic processes Need B-model!
- L shell (L and L\*) Need B-model!
- Phase space density (PSD) Need B-model!



## What are they talking about? (2)

#### Waves in the magnetosphere

#### **Need B and E-models!**

- Local stochastic acceleration
  - Local heating, break 1<sup>st</sup> or 2<sup>nd</sup> invariant
- ULF wave resonant
  - Radial diffusion, break 3<sup>rd</sup> invariant
- VLF waves
  - Pitch angle diffusion, break 1<sup>st</sup> or 2<sup>nd</sup> invariant



## What are they talking about? (3)

- Diffusion theory: time evolution of a distribution of particles whose trajectories are disturbed by innumerable small, random changes.
  - Has to break one or more invariants
  - Has to remove the adiabatic motions



### More on diffusion matters

- Diffusion coefficients
  - Radial diffusion (D<sub>LL</sub>)
  - Pitch angle diffusion ( $D_{\alpha\alpha}$ )

$$\frac{\partial f}{\partial t} = \frac{\partial}{\partial L} \left[ D_{LL} \frac{1}{L^2} \frac{\partial}{\partial L} \left( L^2 f \right) \right], \quad D_{LL} = \frac{\left\langle (\Delta L)^2 \right\rangle}{2}$$

$$\frac{\partial f}{\partial t} = \frac{1}{\sin \alpha} \frac{\partial}{\partial \alpha} \left[ D_{\alpha \alpha} \sin \alpha \frac{\partial f}{\partial \alpha} \right]$$



Chia-Lin Huang

### Importance of B and E field models

- VERY IMPORTANT!!!
- Field models determine almost everything
- Model validation





# What are they fighting for?

#### Balance between everything...

- Particle acceleration mechanisms
  - Internal and external heating mechanisms
  - Shock acceleration
  - Substorm injection
  - Recirculation, Jovian source, Cusp diffusion, SEP event
- Loss
  - Pitch angle diffusion
  - Coulomb collision
  - Magnetopause shadowing
- Transport
- No-so-perfect field models



Chia-Lin Huang

# What are they fighting for?

#### Balance between everything...

- Particle acceleration mechanisms
  - Internal and external heating mechanisms
  - Shock acceleration
  - Substorm injection
  - Recirculation, Jovian source, Cusp diffusion, SEP event
- Loss
  - Pitch angle diffusion
  - Coulomb collision
  - Magnetopause shadowing
- Transport
- No-so-perfect field models



# Why is it so hard?

- Observational difficulties
  - Lack of measurements
  - Energetic particles are hard to measure
  - Converting particle flux to PSD is tricky
    - Because of not-so-perfect magnetic field model
- Modeling difficulties
  - Not-so-perfect magnetic and electric field model
    - Field configurations and wave fields
  - Limited understanding of wave-particle interactions
  - Limited computational resource

# What would help?

- Better understanding of
  - Inner magnetospheric structure and dynamics
  - Wave-particle interactions
- Multi-spacecraft mission
  - Radiation Belt Storm
    Probes (RBSP)
  - Demonstration Science
    Experiments (DSX)
- Physics-based Modeling
  - Include all physical processes



# **Space Radiation Climatology**

- Goal: produce data-assimilative models of the magnetically trapped plasmas and radiation belts.
- IM tutorial talk: Friday morning by Paul O'Brien, Aerospace, title: "Space Radiation Climatology: A New Paradigm for Inner Magnetosphere Simulation and Data Analysis"
- Four breakout sessions on Thursday and Friday
  - Intro to focus group
  - Radiation Belt Data and Simulations
  - Ring Current/Plasmasphere Data and Simulations
  - Strategy and planning session

## Student sponsored tutorial talk

- Harlan Spence,
  Boston University
- Title: Radiation Belt
  Redux: Science
  Objectives of the
  RBSP Mission
- Tuesday morning

