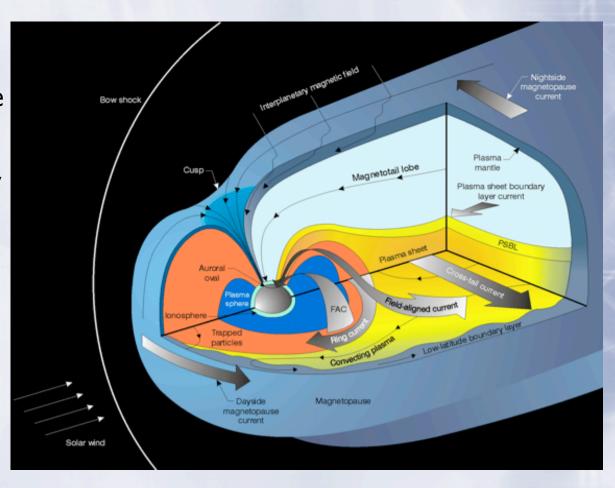


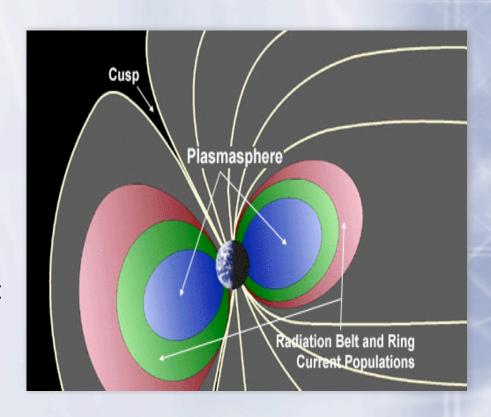
Raluca Ilie
University of Michigan
GEM 2007 - Student Tutorial


- **Magnetosphere**
- Inner Magnetosphere
 - Plasmasphere
 - □ Plasma Sheet
 - Ring Current
- **□ Summary**

Magnetosphere:Formation

Magnetosphere: Main Regions

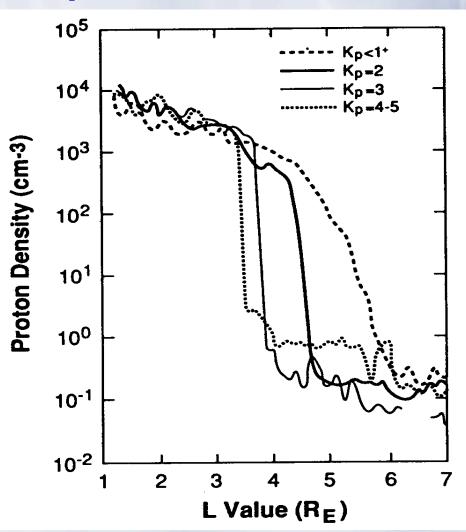
- Bow Shock: fast magnetosonic shock
- Magnetosheath:turbulence
- Magnetopause: tangential discontinuity, magnetic reconnection, KH instability
- Cusp Region:turbulence, edge flows
- Trapping regions:particle trapping,currents,drift motion
- Neutral sheet:magnetic reconnection

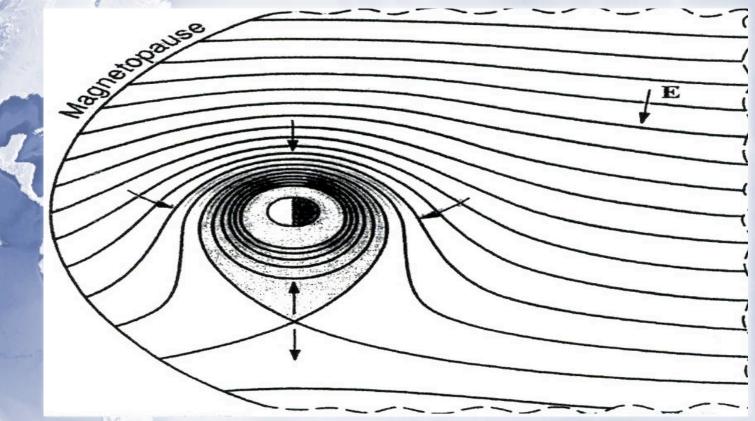


The Inner Magnetosphere

- Inner magnetosphere is where space weather matters
 - This is where we fly lots of commercial and military satellites
 - Even the calm times are full of dynamic processes
- There are 3 main plasma populations in the inner magnetosphere
 - □ Plasmasphere: contains the mass
 - Ring current: contains the energy
 - Radiation belt: contains the dangerous particles

Plasmasphere: Basic Definition

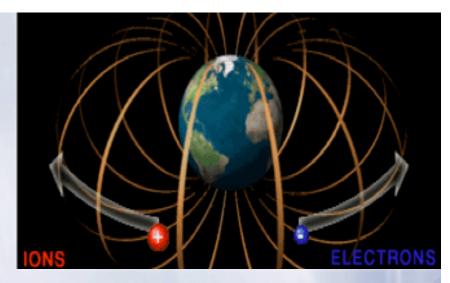

- Cold: Less than 1eV, maybe up to 10eV
- Dense: Number densities: 10² to 10³ cm⁻³
- Ionospheric: Source is in the subauroral ionosphere
- Mostly Protons: often-quoted composition, 77% H+, 20% He+, and 3% O+
- E-field dominated: spatial extent governed by magnetospheric electric field time history
- Important: dominates the mass density of the inner magnetosphere


Plasmasphere

□ Terminated at a shar at plasmapause.

The location of the pl magnetic activity.

Plasma drifts paths: due to the corotational electric field combined with the convection electric field


Plasma Sheet: Bas

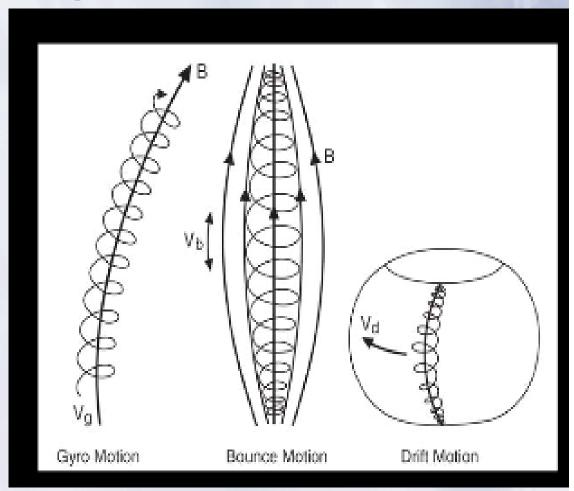
- I Contains highly stretched magnetic field lines.
- Hot (keV particles) that have nearly symmetric velocity distributions)
- Dense: Number densities are typically: 0.1-1cm⁻³
- Composed of H⁺ and O⁺ (in modest concentrations during quiet time but almost as abundant as H⁺ during storm time).
- □ Almost invariably T_i=7T_e
- For the most part, plasma sheet lies on closed field lines; might sometime contain plasmoids.

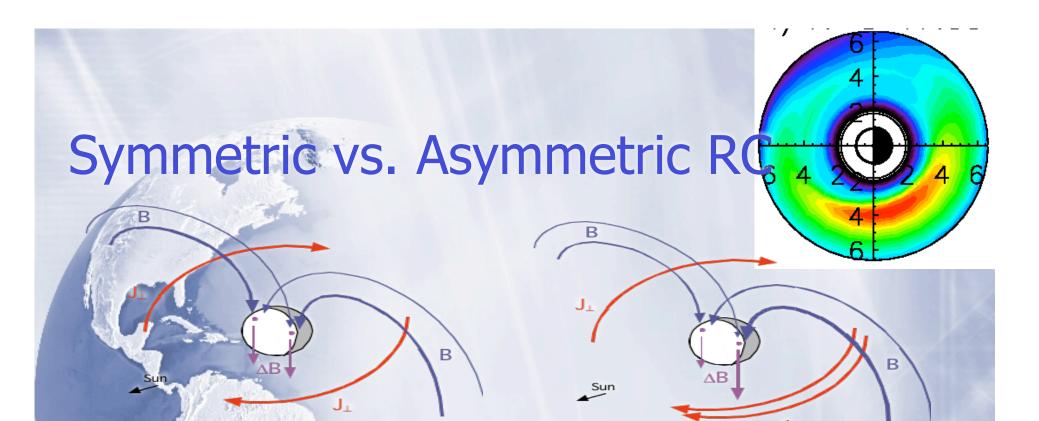
Ring Current: Basic Definition

- Tenuous: quiet, 1 cm⁻³; active, 10s cm⁻³
- Plasma sheet: source is near-Earth magnetotail, wherever that comes from
- Mostly Protons: During big storms, O+ can dominate
- Complicated Drift: E-field, B-field, Gradient-curvature terms
- Important: Dominates the energy density of the inner magnetosphere

Ring Current

- Located between 2 and 7 Earth Radii
- Toroidal shaped current that flows westward.
- Ions and electrons move in opposite directions
- Electrons contribute little to the ring current due to their negligible energy density.
- Associated with strong perturbations in the magnetic field measured at Earth.
- Prevents the dynamo-generated electric fields at high latitudes from penetrating to middle and low latitudes.


Ring Current


□ Gradient-curvature drift of equatorial trapped particles with:

$$\vec{V}_{GC} = -\frac{3}{2} \frac{mv^2}{q} \frac{L^2}{B_e R_e} \hat{e}_{\phi}$$

The total current:

$$I_{\phi} = -3 \frac{L^2}{B_e R_e} \sum_{e,i} N_t \frac{m_t v_t^2}{2}$$

Right-hand rule (Biot-Savart Law): Westward current induces an southward B at Earth. Symmetric current produces a symmetric perturbation

Weaker RC at some local time makes the perturbation asymmetric A completely asymmetric ring current also ads a symmetric component to the perturbation.

Dst Index

- The Dst index monitors the magnetic storm level
- Constructed by averaging the horizontal component of the Earth magnetic field from midlatitude and equatorial stations from all over the world.
- The negative deflections in the Dst index are caused by storm time ring current which flows around the Earth from east to west in the equatorial plane.

SUMMARY

POPULATION	DENSITY	TEMPERATURE	SOURCE	COMPOSITION	DRIVER	IMPORTANCE
Plasmasphere	100s cm ³ to 1000	<1eV, and up to 10s of eV	Subauroral ionosphere	H ⁺ , some He ⁺ and O ⁺	E field	Dominates mass energy
Ring Current	~few cm³ up to 10s	1-400keV	Plasma sheet (Solar Wind and ionosphere)	H ⁺ and O ⁺ during storms	E and B fields	Dominates energy density