Don't Go With the Flow: An Invitation to Research on the Foreshock and Magnetosheath

> D. G. Sibeck NASA/GSFC

Outline

- 1. Motivation
- 2. Gasdynamics, MHD, and Kinetic Models
- 3. Summary

GEM, Foreshock, and Magnetosheath Global Geospace General Circulation Models need accurate foreshock/magnetosheath modules:

- Magnetosheath (not solar wind) lies in contact with magnetopause.
- Foreshock and magnetosheath processes drastically modify solar wind plasma before it reaches magnetopause.
- The physics underlying these processes is fundamental and deserving of study in its own right: reconnection, particle energization, basic modes of solar wind-magnetosphere interaction.

Global Models and Observations

- Gasdynamic
 - Readily available, easy to use & parameterize
 - Fine if you can neglect magnetic field and kinetic effects
- Magnetohydrodynamic
 - Include magnetic pressures and curvature forces-->
 - Widespread use, runs-on-demand at CCMC
- Hybrid
 - Include kinetic effects
 - Under development

Upright, Uses Tools, Speaks, Intelligible

Homo

Gasdynamic Models

- Spreiter et al. [1966] presented an axially-symmetric steady-state gasdynamic model for flow around a rigid magnetopause. It predicts:
 - Magnetosheath densities, velocities, temperatures
 - Draped magnetic field strengths and directions (but not self-consistently)
 - Bow shock location
 - Results look good when magnetic pressures and tensions, kinetic effects can be neglected.

Gasdynamics: Spreiter et al. [1966]

We feel it is right, but there are no empirical models to compare with!

Gasdynamic Model Provides Good Source Populations for Cusp Precipitation Models

Gasdynamics Model Provides Densities/Velocities Needed to Predict Motion of Reconnected Magnetic Field lines

Gasdynamics: Spreiter et al. [1966]

...but not perfect. Predicting Magnetosheath Magnetic Field Orientations

- 30% of magnetosheath magnetic field clock angles lie within 10° of those in the IMF, 70% lie within 30°
- So.. "it is not safe to rely on the orientation of the magnetosheath magnetic field at any given patch within 2 R_E of the magnetopause to be similar to that observed in the upstream IMF or predicted by any simple gasdynamic or analytical model." [Coleman, 2005]

Interplanetary-Magnetosheath Bz Comparisons

Chance of predicting sign of Bz in sheath increases with increasing IMF IBzl component. Safrankova et al. [2009]

Analytical Models Provides Framework to Determine Particle Sources

Connectivity determines whether particles can reach a given location [e.g., Trattner et al., 2003]

MHD Models

- Self-consistent bow shock and magnetopause locations
- Depletion layer and flow acceleration due to magnetic pressure and gradient curvature forces
- Fast, slow, and intermediate mode waves launched when solar wind discontinuities strike the bow shock.
- Reconnection and Kelvin-Helmholtz instabilities on the magnetopause

MHD: Dynamic Interaction

Response to varying solar wind densities and IMF orientations

[C. Goodrich, Personal comm.]

Densities and Aurora

MHD Magnetopause Boundary: Multivariant Function of Control Parameters

Predicted Sheath Thicknesses Chapman et al. [2004]

90°

\$

20

-20

40

6

20

-20

\$

0 (R

>

θ_{IMF}=90°

 $\theta_{\rm IMF} = 90^{\circ}$

\$

-20

0

(³と) ×

20

o (B

Slow Mode Waves Standing in Inner Magnetosheath: Density Enhancements (analogous to bow shock)?

Song et al [1992]

Perhaps Observed Density Enhancements are Transmitted SW Features [Hubert/Samsonov, 2004]? And perhaps not..see my talk in cusp session ISEE-3 Solar Wind

MHD: Depletion Layer Density Dependence on IMF

Strong dependence on IMF latitude

Weak dependence on IMF latitude

Superposed Epoch Analyses of Low and High Shear Dayside Magnetopause Dayside Crossings

Minutes from Inbound Magnetopause Crossing

Depletion Layer Thicknesses

Draped Magnetic Field Lines, Curvature Forces, and Flow Acceleration On Magnetotail Flanks

Velocities

Flow Acceleration

Enable steady reconnection during northward IMF [Avanov et al., 2001; Panov et al., 2008]

Dawn/Dusk Density Asymmetries??? Paularena et al. [2001] MHD tail X-section at X = $-17 R_{\rm E}$ Densities 5% greater on dawnside?

Reconnection Affects Field Line Draping Outside Magnetotail

Field deflections consistent with expected tilt of dayside reconnection line

Kaymaz et al. [1992]

Predicted Weak Magnetosheath Magnetic Fields Await Observational Confirmation

	Draping	Sash: Antiparallel Sheath and Sphere Fields
Cone Angle 15°	Nulls	
30° Crook	cer et al [1990]	Siscoe [2002]
Crook	(er et al. [1990]	NEED empirical model

Interplanetary Shocks and the Bow Shock

Predicted and Observed Koval et al. [2005; 2006]

Predicted [Samsonov et al., 2007] Observed?

Rotational Discontinuities and the Bow Shock

Predict $\Delta V \propto -\Delta B$ pre-noon, but $\Delta V \propto \Delta B$ post-noon [Cable and Lin, 1998]

Fluctuations in Sheath

00:00

01:00

02:00

03:00

04:00

UT

05:00

- 1. As predicted, ΔV fluctuations reverse across local noon, WIND B_{xe} (nT) greeme but..... $\Delta V \ll \Delta B/(\mu_o \rho)^{1/2}$ WIND B_{ye} (nT) - Slow mode waves? GEOTAIL launched by solar wind Alfvén waves $V_{ze} (km s^{-1})$ [Sibeck et al., 1997; 2000] $\Delta V \propto -\Delta B$ or B_{ze} (nT) GEOTAIL post-noon - Alfvén mode waves invariably with $T_{\perp} < T_{\prime\prime}$ in sheath (though B_{ze} (nT) this is never observed) with a $V_{Aze}/2 + 10$ $\Delta V \propto \Delta B_{ij}$ source at subsolar magnetopause, [Matsuoka et al., 2000; 2002] pre-noon
- 12/30/1996

GEOTAIL

GEOTAIL

Magnetosheath

WIND

06:00

07:00

Rotational Discontinuities and the Bow Shock

KH Instability and Standing Waves

Standing Fast Mode Waves?

Sw BIME

Upstream Facing Standing Slow Mode Waves?

Lai and Lyu [2006]

Hybrid Code Models

- •Foreshock, compressional boundaries, hot flow anomalies
- •Solitary shock --> Unusual flows
- •Triggering reconnection On transmitted TDs
- •Sheath Fluctuations--> trigger FTEs?
- N. Omidi [personal comm., 2009]

Foreshock Compressional Boundaries

Cavities Upstream and in Magnetosheath

<u>Major source of large-amplitude magnetopause motion and strong</u> <u>magnetospheric compressions</u> [Sibeck et al., 1989; Fairfield et al., 1990]

Hot Flow Anomalies

HFAs, exhibiting greatly heated plasmas and strong flows transverse to the Sun-Earth line, occur when and where certain TDs intersect bow shock

Omidi and Sibeck [2008]

Х

DOMINANT cause of TCVs reported by Murr and Hughes [2003]

•When and where to look [Omidi and Sibeck, 2007]: –High-lat southern (northern) shock for IMF By > 0 (<0) –Dusk (dawn) shock for IMF Bz > 0 (<0)

Tangential Discontinuities and the Bow Shock: Reconnection

Sheath Fluctuations --> FTEs?

STORM Instrument Concept:

A global soft X-ray imager using an astrophysics technique proven at comets/Mars/Venus/Earth to view the Earth's foreshock, magnetosheath, cusps, and magnetopause boundary layers

A joint effort of NASA/GSFC, U. Kansas, U. Leicester, and Solana Scientific

See article in latest EOS

Soft X-Ray Imaging: A Proven Technique

ROSAT, Chandra, and XMM-Newton observations of comets, Venus, Mars, and Earth demonstrate that soft x-rays emitted from solar wind plasma-exospheric neutral atom charge exchange will enable global imaging of Earth's foreshock, bow shock, magnetosheath, and cusps [see Collier et al., EOS, in press].

Chandra X-ray images of Comet Linear

ROSAT soft X-ray fluxes from Earth's magnetosheath track solar wind plasma fluxes

Simulated STORM observations from planned orbit, CCMC MHD model (Robertson)

Summary

- 1. Although the foreshock and magnetosheath are active areas of research, many questions remain unanswered.
- 2. The data sets and simulations needed to address many of these questions are readily available. Global images may be possible soon.
- 3. The results will have a direct bearing on our understanding of the solar wind-magnetosphere interaction and the development of global models.