MODELING GLOBAL IONOSPHERIC PHENOMENA

(SAMI3, equatorial spread F, electrodynamics, ...)

J.D. Huba Plasma Physics Division Naval Research Laboratory Washington, DC

CEDAR Prize Lecture Santa Fe, NM June 2011

acknowledge: G. Joyce, J. Krall, S. Slinker, M. Swisdak, S. Sazykin

research supported by ONR and NASA

THE IONOSPHERE

weakly ionized plasma surrounding the earth

- neutrals ionized by sun's EUV radiation (10Å- 1000Å)
- extends from 90 km to 1000s km
- $n_e \lesssim 10^6 \ {
 m cm}^{-3}$ but $n_n \lesssim 10^{10} \ {
 m cm}^{-3}$
- multi-ion plasma
- $\bullet\,$ very low $\beta\,$ plasma: $\beta\sim 10^{-5}$
- on the cold side $T \lesssim 3000 {\rm K}$ (or .3 eV)
- anisotropic conductivities: $\sigma_{\parallel} >> \sigma_{\perp}$
- assume magnetic field lines are equipotentials

SAMI3

- ions: $H^+, O^+, He^+, N^+, N_2^+, NO^+, O_2^+$
- interhemispheric model
- $\bullet\,$ vertical and zonal $E\times B$ drift
- neutral species: NRLMSISE00/HWM93/TIMEGCM/GITM
- fully parallelized using MPI
- nonorthogonal, nonuniform fixed grid
- solve continuity, velocity, temperature, and potential equations

PLASMA DYNAMICS

• ion continuity

$$\frac{\partial n_i}{\partial t} + \nabla \cdot (n_i \mathbf{V}_i) = P_i - L_i n_i$$

• ion velocity

$$\begin{split} \frac{\partial \mathbf{V}_i}{\partial t} + \mathbf{V}_i \cdot \nabla \mathbf{V}_i &= -\frac{1}{\rho_i} \nabla \mathbf{P}_i + \frac{e}{m_i} \mathbf{E} + \frac{e}{m_i c} \mathbf{V}_i \times \mathbf{B} + \mathbf{g} \\ &- \nu_{in} (\mathbf{V}_i - \mathbf{V_n}) - \sum_j \nu_{ij} \left(\mathbf{V}_i - \mathbf{V}_j \right) \end{split}$$

• ion temperature

$$\frac{\partial T_i}{\partial t} + \mathbf{V}_i \cdot \nabla T_i + \frac{2}{3} T_i \nabla \cdot \mathbf{V}_i + \frac{2}{3} \frac{1}{n_i k} \nabla \cdot \mathbf{Q}_i = Q_{in} + Q_{ij} + Q_{ie}$$

PLASMA DYNAMICS

electrons

• electron momentum

$$0 = -\frac{1}{n_e m_e} b_s \frac{\partial P_e}{\partial s} - \frac{e}{m_e} E_s$$

• electron temperature

$$\frac{\partial T_e}{\partial t} - \frac{2}{3} \frac{1}{n_e k} b_s^2 \frac{\partial}{\partial s} \kappa_e \frac{\partial T_e}{\partial s} = Q_{en} + Q_{ei} + Q_{phe}$$

POTENTIAL EQUATION

$$\nabla \cdot \Sigma \nabla \Phi = S(g, V_n, J_{\parallel}) \qquad \mathbf{E} = -\nabla \Phi$$

THE BEGINNING OF ESF

Booker and Wells, J. Geophys. Res. 43, 249 (1938)

SCATTERING OF RADIO WAVES BY THE P-REGION OF THE IONOSPHERE By H. G. BOOKER AND H. W. Wells

MODERN OBSERVATIONS

optical data (Jon Makela)

BUBBLE CARTOON

Woodman and LaHoz, J. Geophys. Res. 81, 5447 (1976)

Fig. 9. Schematic representation of a three-density model of the ionosphere showing the formation of a bubble of low electron density and its propagation to the gravitationally stable top. The middle fluid is heavier than the top, and the top fluid heavier than the bottom.

FIRST BUBBLE SIMULATION

250

-2.0

0 (km)

Scannapieco and Ossakow Geophys. Res. Lett. 3, 451 (1976)

EQUATORIAL SPREAD F

- equatorial spread *F* is the development of ionospheric irregularities in the nighttime equatorial ionosphere.
- it is fundamentally a Rayleigh-Taylor instability
- linear growth rate (Sultan, 1996):

$$\gamma = \frac{\Sigma_P^F}{\Sigma_P^E + \Sigma_P^F} \frac{1}{L_n} \left(V_p + U_n^P + g_L / \nu_{in}^{eff} \right) - R_T$$

- plasma 'bubbles' nonlinearly penetrate the topside ionosphere
- range of electron density irregularities: 10s km - 10s cm much less than global scales: 1000s km

Computer simulation of ESF (Zalesak et al., 1982).

Radar backscatter from 3m irregularities at Jicamarca (*Hysell*).

overview

SAMI3/ESF WEDGE MODEL

ELECTRON DENSITY

Huba et al., GRL 35, L10102, 2008

ELECTRON TEMPERATURE

Huba et al., GRL 36, L15102, 2009

SAMI3/ESF SUMMARY

- substantial progress in ESF modeling in past few years (9 papers in 2008-10; 7 in GRL)
 - multi-ion dynamics
 - ion and electron temperatures
 - zonal and meridional wind effects
 - why do bubbles stop rising?
 - density enhancements
 - MSTIDs
- next big step: embed ESF in global SAMI3 model

EQUATORIAL PLASMA BUBBLES

- global electrodynamics impacts ESF development (e.g., pre-reversal enhancement of the eastward electric field)
- the problem:
 - global length scales 100s 1000s km
 - bubble length scales 10s 100s km
- frontier problem: need to develop model that captures physical processes on these disparate scales

- reference frame: copernican (sun-fixed: rotating earth)
- coarse mesh: 90 grid points
- ullet zonal resolution \sim 500 km
- high resolution mesh: 956 grid points between \sim 16:30 MLT 22:30 MLT
- \bullet zonal resolution \sim .0625° or \sim 7 km

POTENTIAL EQUATION

based on current conservation: $\nabla \cdot \mathbf{J} = 0$: caveat - aligned dipole

$$\nabla \cdot \Sigma \nabla \Phi = S(g, V_n)$$
 $\mathbf{E} = -\nabla \Phi$

$$\underbrace{\frac{\partial}{\partial p} p \Sigma_{pp} \frac{\partial \Phi}{\partial p} + \frac{\partial}{\partial \phi} \frac{1}{p} \Sigma_{p\phi} \frac{\partial \Phi}{\partial \phi}}_{\text{pedersen}} \underbrace{-\frac{\partial}{\partial p} \Sigma_H \frac{\partial \Phi}{\partial \phi} + \frac{\partial}{\partial \phi} \Sigma_H \frac{\partial \Phi}{\partial p}}_{\text{hall}} = \underbrace{\frac{\partial F_{pV}}{\partial p} + \frac{\partial F_{\phi V}}{\partial \phi}}_{\text{neutral wind dynamo}} \underbrace{-\frac{\partial F_{pg}}{\partial p} + \frac{\partial F_{\phi g}}{\partial \phi}}_{\text{gravity driver}}$$

FIRST GLOBAL MODEL OF ESF

Huba and Joyce, GRL, 2010

FIRST GLOBAL MODEL OF ESF

Huba and Joyce, GRL, 2010

RESULTS

pre-sunset perturbations; one bubble can initiate another

RESULTS

global view of isocontours

RESULTS

global view of TEC

parameter studies

e.g., vary perturbation altitude, geophysical parameters, location of high resolution region

- code improvement: high order transport scheme e.g., partial donor cell method
- 3D electrodynamics
- gravity wave seeding

GLOBAL ELECTRODYNAMICS

changing gears

- Σ : field-line integrated Hall and Pedersen conductivities (SAMI3)
- J_{\parallel} : magnetosphere driven (RCM/LFM)
- V_n : solar and magnetosphere driven (HWM/TIMEGCM)
- problem is tying everything together self-consistently

ELECTRODYNAMIC COUPLING

- driver: region 1 and 2 current systems
- SAMI3/LFM are coupled electrodynamically
- (and ionization caused by precipitating electrons)

ELECTRODYNAMIC COUPLING

- SAMI3/RCM are coupled electrodynamically
- preliminary storm-time run

CURRENT PROGRESS

- use region 1/2 currents from LFM (color contours)
- also use energy and energy flux from LFM to prescribe ionization from precipitating electrons
- use HWM93 wind model
- $\bullet\,$ upper boundary is $89^\circ\,$

SAMI3 solves potential

CURRENT PROGRESS

pushing into the plasmasphere (modified Volland-Stern potential plus corotation)

NOW FOR SOMETHING COMPLETELY DIFFERENT Hall MHD

• Ohm's law (electrons frozen into magnetic field)

$$\mathbf{E} + \frac{1}{c} \mathbf{V}_e \times \mathbf{B} = 0$$

• Current definition (assumes quasineutrality)

$$\mathbf{J} = ne(\mathbf{V}_i - \mathbf{V}_e) \quad \Rightarrow \quad \mathbf{V}_e = \mathbf{V}_i - \frac{1}{ne}\mathbf{J}$$

• Electric field is written as

$$\mathbf{E} = -\frac{1}{c} \mathbf{V}_i \times \mathbf{B} + \underbrace{\frac{Hall \ term}{1}}_{nec} \mathbf{J} \times \mathbf{B}$$

• Physically, the Hall term decouples ion and electron motion on ion inertial length scales: $L \lesssim c/\omega_{pi}$

IDEAL VS HALL MHD

relevance: plasma opening switch

- Ideal MHD
- Hall MHD

HALL MAGNETIC DRIFT WAVE (KMC)

Huba, Phys. Fl. B, 1991

$$V_n = V_A \left(\frac{c}{\omega_{pi}} \frac{1}{n} \frac{\partial n}{\partial x}\right)$$

SUMMARY

- considerable progress in modeling equatorial spread F using the SAMI3 wedge model and the global SAMI3
- future work will focus on day-to-day variability and code improvements (e.g., 3D electrodynamics, high-order transport scheme, coupling to thermosphere with TIMEGCM, gravity wave seeding)
- improving SAMI3 to model global electrodynamics and its impact on low-latitude ionosphere as well as the plasmasphere

WHAT SAMI2 LOOKS LIKE

sami2 personified

WHAT SAMI2 LOOKS LIKE

sami2 personified

