Supra Arcade Downflows and Evidence for Magnetic Reconnection in Solar Flares

Harry Warren Naval Research Laboratory

Geospace Environment Modeling 2012 Summer Workshop June 18, 2012

Summary

Background: What am I looking at?

Hinode/SOT

Summary

Background: What am I looking at?

Reconnection in Flares: Cusps Downflows

Hinode/SOT

Summary

Background: What am I looking at?

Reconnection in Flares: Cusps Downflows

> Downflows in the outer corona

Hinode/SOT

Fe XII 195.119 Å

"A Magnificent Cusp" Hugh Hudson/Yohkoh Science Nugget

"Behold!" proof of the Pythagorean Theorem Bhaskara II (1114-1185) "A Magnificent Cusp" Hugh Hudson/Yohkoh Science Nugget

Supra-Arcade Downflows

Supra-Arcade Downflows

- McKenzie & Hudson, ApJ, 1999
- McKenzie, Solar Physics, 2000
- Innes et al., Solar Physics, 2003
- Asai et al., ApJ, 2004
- Sheeley, Warren, & Wang, ApJ, 2004

- Reeves et al., JGRA, 2008
- Warren et al., ApJ, 2011
- Savage & McKenzie, ApJ, 2011
- Takasao et al., ApJ, 2012
- Savage et al., ApJ, 2012

Supra-Arcade Downflows

- McKenzie & Hudson, ApJ, 1999
- McKenzie, Solar Physics, 2000
- Innes et al., Solar Physics, 2003
- Asai et al., ApJ, 2004
- Sheeley, Warren, & Wang, ApJ, 2004

- Reeves et al., JGRA, 2008
- Warren et al., ApJ, 2011
- Savage & McKenzie, ApJ, 2011
- Takasao et al., ApJ, 2012
- Savage et al., ApJ, 2012

Supra-Arcade Downflows: Another Example

TRACE 195 Å

Height-Time Plot

Sheeley, Warren, & Wang, ApJ, 2004

Height-Time Plot: March 16, 2011 SDO/AIA 131 Å

Example Height Time Track: March 16, 2011

TABLE 1 INFLOW PROPERTIES								
Track	h_0	a_0	au	v_0	v_T			
	(Mm)	$({\rm km}{\rm s}^{-2})$	(s)	$({\rm km}~{\rm s}^{-1})$	$({\rm km}{\rm s}^{-1})$			
16 March 2011								
00	132.6	0.039	831.7	-32.1	0.0			
01	149.0	2.282	119.0	-271.6	0.0			
02	178.6	0.274	454.1	-124.5	0.0			
03	196.6	0.492	290.6	-143.0	0.0			
04	204.3	0.857	226.7	-194.2	0.0			
05	136.5	0.619	261.2	-161.7	0.0			
06	188.9	0.271	500.6	-135.8	0.0			
07	180.9	0.308	507.7	-156.2	0.0			
08	225.6	0.089	1031.3	-91.7	0.0			
09	250.4	0.044	1938.6	-84.6	0.0			
9 May 2011								
00	113.6	2.185	128.1	-279.9	0.0			
01	118.9	1.043	212.5	-221.7	0.0			
02	131.1	1.506	166.6	-250.9	0.0			
03	117.6	0.581	231.3	-134.3	0.0			
04	128.2	0.440	345.3	-152.1	0.0			
05	110.8	0.161	406.1	-65.3	0.0			
06	63.8	0.087	659.1	-57.1	0.0			
07	82.0	0.237	363.8	-86.1	0.0			
08	80.4	1.050	115.6	-121.3	0.0			
09	103.7	0.786	192.2	-151.1	0.0			
10	73.8	0.306	245.1	-75.1	0.0			
11	90.9	0.375	270.7	-101.7	0.0			
18 May 2011								
00	75.2	2.687	102.1	-274.4	0.0			
01	84.7	2.726	97.1	-264.8	0.0			
02	83.3	0.451	274.1	-123.7	0.0			
03	70.5	3.407	77.7	-264.8	0.0			
04	61.7	1.190	120.0	-142.8	0.0			
05	75.1	0.867	165.8	-143.7	0.0			
06	88.3	0.473	316.6	-149.9	0.0			
07	70.7	1.059	155.9	-165.0	0.0			
08	76.7	0.438	243.4	-106.5	0.0			
09	83.1	0.403	440.2	-177.5	0.0			

TABLE 1 INFLOW PROPERTIES								
Track	h_0	a_0	au	v_0	v_T			
	(Mm)	$({\rm km}{\rm s}^{-2})$	(s)	$({\rm km}~{\rm s}^{-1})$	$({\rm km}{\rm s}^{-1})$			
16 March 2011								
00	132.6	0.039	831.7	-32.1	0.0			
01	149.0	2.282	119.0	-271.6	0.0			
02	178.6	0.274	454.1	-124.5	0.0			
03	196.6	0.492	290.6	-143.0	0.0			
04	204.3	0.857	226.7	-194.2	0.0			
05	136.5	0.619	261.2	-161.7	0.0			
06	188.9	0.271	500.6	-135.8	0.0			
07	180.9	0.308	507.7	-156.2	0.0			
08	225.6	0.089	1031.3	-91.7	0.0			
09	250.4	0.044	1938.6	-84.6	0.0			
9 May 2011								
00	113.6	2.185	128.1	-279.9	0.0			
01	118.9	1.043	212.5	-221.7	0.0			
02	131.1	1.506	166.6	-250.9	0.0			
03	117.6	0.581	231.3	-134.3	0.0			
04	128.2	0.440	345.3	-152.1	0.0			
05	110.8	0.161	406.1	-65.3	0.0			
06	63.8	0.087	659.1	-57.1	0.0			
07	82.0	0.237	363.8	-86.1	0.0			
08	80.4	1.050	115.6	-121.3	0.0			
09	103.7	0.786	192.2	-151.1	0.0			
10	73.8	0.306	245.1	-75.1	0.0			
11	90.9	0.375	270.7	-101.7	0.0			
18 May 2011								
00	75.2	2.687	102.1	-274.4	0.0			
01	84.7	2.726	97.1	-264.8	0.0			
02	83.3	0.451	274.1	-123.7	0.0			
03	70.5	3.407	77.7	-264.8	0.0			
04	61.7	1.190	120.0	-142.8	0.0			
05	75.1	0.867	165.8	-143.7	0.0			
06	88.3	0.473	316.6	-149.9	0.0			
07	70.7	1.059	155.9	-165.0	0.0			
08	76.7	0.438	243.4	-106.5	0.0			
09	83.1	0.403	440.2	-177.5	0.0			

Initial Formation of High Temperature Flare Loops

first hot loops form "in place" - no initial downward motion

Height-Time Plot: March 16, 2011

first hot loops form "in place" - no initial downward motion

Kelvin-Helmholtz Instability?

Foullon et al., ApJL, 2011

Inflows in the Outer Corona

- Questions:

Questions:Velocities are sub-Alfvénic

- Questions:

AIA/SDO 131 Å

- Velocities are sub-Alfvénic

- Evidence for "patchy" reconnection?

- Questions:

- Velocities are sub-Alfvénic
- Evidence for "patchy" reconnection?
- Initial loop formation?

- Questions:

- Velocities are sub-Alfvénic
- Evidence for "patchy" reconnection?
- Initial loop formation?
- "tadpoles" vs "loops"

- Questions:

- Velocities are sub-Alfvénic
- Evidence for "patchy" reconnection?
- Initial loop formation?
- "tadpoles" vs "loops"
- Wave motions?

- Questions:

- Velocities are sub-Alfvénic
- Evidence for "patchy" reconnection?
- Initial loop formation?
- "tadpoles" vs "loops"
- Wave motions?
- Outer corona?