Magnetic Reconnection at the Dawn of the MMS Era

Michael Shay
Department of Physics and Astronomy
University of Delaware

Outline

- Primer on Reconnection
- Observing Electron Scales: MMS Mission
- "Simple" Electron Diffusion Regions
- Magnetic Islands and Self-Generated Turbulence
- Externally Imposed Turbulence
- Conclusions

Outline

- Primer on Reconnection
- Observing Electron Scales: MMS Mission
- "Simple" Electron Diffusion Regions
- Magnetic Islands and Self-Generated Turbulence
- Externally Imposed Turbulence
- Conclusions

MHD - Magnetohydrodynamics

• Fluid Equations

- Slow Timescales
- Large length scales

Key Physics

- Plasma "Frozen-in" to the magnetic field
 - Magnetic Topology is conserved:
 - No magnetic reconnection

Ohm's Law

$$m_i n \frac{d}{dt} \mathbf{V} = \frac{\mathbf{B} \cdot \nabla \mathbf{B}}{4\pi} - \nabla \left(nT + \frac{\mathbf{B}^2}{8\pi} \right)$$

$$\frac{\partial}{\partial t}\mathbf{B} = -c \; \nabla \times \mathbf{E}$$

$$\frac{\partial}{\partial t}n = -\nabla \cdot n\mathbf{V}$$

$$\mathbf{E} = -\frac{\mathbf{V}}{c} \times \mathbf{B}$$

Magnetic Topology is Conserved

Magnetic field lines can't be cut.

Magnetic Reconnection

- Simplistic 2D picture
- Tiny "Diffusion Region"
- Change of magnetic topology
- Releases magnetic energy
- Important:
 - "Diffusion" not necessarily "Dissipation"

Diffusion Region Boundary Layer MHD not valid

Magnetic Reconnection

J_z and Magnetic Field Lines

- X-line region has very intense currents
 - Useful for finding likely reconnection sites

Ohm's Law

$$\mathbf{E} = \frac{-1}{c} \mathbf{V}_{\text{ion}} \times \mathbf{B} + \frac{1}{\text{nec}} \mathbf{J} \times \mathbf{B} - \frac{1}{\text{ne}} \nabla \cdot \mathbf{P}_{e} - \frac{\text{nm}_{e}}{e} \frac{\text{dV}_{e}}{\text{dt}} + \eta \mathbf{J}$$
Hall Finite electron mass Collisions
$$\mathbf{C}/\omega_{\text{pi}}, \, \rho_{\text{s}} \qquad \rho_{\text{e}} \qquad \mathbf{c}/\omega_{\text{pe}}$$

- Diffusion region has electron and ion scales.
 - Effective electron and ion Larmor radii

Two-Scale Diffusion Region: 10 Years Ago

- Dissipation region has two distinct regions:
 - 1. c/ω_{pe} < length scale < c/ω_{pi} , ρ_s Hall physics: Electron frozen-in, Ions not frozen-in
 - 2. length scale $< c/\omega_{pe}$ Frozen-in totally broken: Magnetic topology can change

Electron Region Microscopic: $<< c/\omega_{pi}$

Outline

- Primer on Reconnection
- Observing Electron Scales: MMS Mission
- "Simple" Electron Diffusion Regions
- Magnetic Islands and Self-Generated Turbulence
- Externally Imposed Turbulence
- Conclusions

Ion Scale Diffusion Region

• Electron Diffusion Region Crossing Time is 0.1 sec!

Slide Courtesy of Tai Phan

Geotail crossing through the electron diffusion region

(Nagai, Shinohara, Fujimoto et al., JGR, 2011)

 $Vi_{\perp} << V_{e^{\perp}}$ ion-electron decoupling $V_{e^{\perp}}$ super-ion-Alfvenic

Large cross-tail V_{eY} (strong current)

→ Electron diffusion region

Launch: Late 2014

- Mission dedicated to reconnection
- Crucial data
 collected in burst
 mode

	measurements	MMS	MMS - Dayside	MMS - Nightside
ions	3 sec	0.1 sec		
electrons	3 sec	0.008 sec	1/8 c/ω _{pe}	1/50 c/ω _{pe}
Spacecraft separation	100 km	10 km		

Slide Courtesy of Tai Phan

MMS Basics

MMS: Testbed for Magnetic Reconnection Experiments

- The magnetosphere provides a unique opportunity to study magnetic reconnection
- MMS: Unique opportunity to study electron scale physics
- Knowledge learned has broad application throughout the heliosphere
 - Sun-Magnetosphere Space Weather
 - Solar Flares
 - Outer heliosphere

Electron Scale Questions

- Where is the electron frozen-in constraint broken?
 - What allows magnetic topology to change?
- Is reconnection turbulent or laminar?
 - Effect of intrinsic instabilities?
 - Effect of external turbulence
- How is magnetic energy dissipated?
 - Where is magnetic energy dissipated?
- How are electrons energized and heated?

Outline

- Primer on Reconnection
- Observing Electron Scales: MMS Mission
- "Simple" Electron Diffusion Regions
- Magnetic Islands and Self-Generated Turbulence
- Externally Imposed Turbulence
- Conclusions

Simulating Electron Diffusion Regions

- Fluid Description not adequate
- Kinetic representation: Boltzmann Equation

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f + \frac{e}{m_i} \left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B} \right) \cdot \nabla_v f = 0$$

- f(x,v)
- Two options
 - Discretize x and v
 - 5 dimensions Expensive!
 - Random particles: Follow trajectories

Simulating Kinetic Reconnection

- Finite Difference
 - Fluid quantities exist at grid points.
- E,B treated as fluids always
 - Maxwell's equations
- Kinetic Particle in Cell
 - E,B fluids
 - Ions and electrons are particles.
 - Stepping fluids: particle quantities averaged to grid.
 - Stepping particles: Fluids interpolated to particle position.

- Grid cell
- Macro-particle

2D Simulations: Where Does Electron Frozen-In Break?

- Not a microscopic region near x-line
 - 10s of Ion Inertial Lengths!
 - Associated with large scale super-Alfvenic electron jet
 - Super-alfvenic electron outflow jet not frozen-in
 - Karimabadi et al., 2007
 - Shay et al., 2007
- Outer region not associated with dissipation.
 - Hesse et al., 2008
 - Zenitani et al., 2011

Comparison: Observations and PIC

- 2D compares well with observations Phan et al., 2007
- Observations not anti-parallel reconnection

Small Guide Field Deflects Jet?

- Guide Field means not anti-parallel magnetic field lines.
 - Component Reconnection
- For realistic mass ratios, even a small guide field deflects the jet

Goldman et al., 2011

Strong Beta Dependence: Multitude of Diffusion Regions

- 4 distinct structures of the electron diffusion region depending on parameters.
 - Temperature anisotropy, $T_{e\perp}/T_{e\parallel}$ important
- Mozer et al argues that diffusion region uninteresting.
 - Frozen-in broken all over the place

Le, Egedal et al., 2013

"Simple" Electron Diffusion Regions and MMS

- MMS Observations will be critical for understanding these basic questions
 - Where is the electron frozen-in constraint broken?
 - What breaks the electron frozen-in constraint?
 - Where does dissipation occur?

Outline

- Primer on Reconnection
- Observing Electron Scales: MMS Mission
- "Simple" Electron Diffusion Regions
- Magnetic Islands and Self-Generated Turbulence
- Externally Imposed Turbulence
- Conclusions

Self Generated Turbulence

Secondary Tearing Mode

e.g., Karimabadi et al., 2005

- Initially laminar system goes unstable.
- And many more instabilities
 - Especially in 3D

Electron Kelvin Helmholtz

e.g., Fermo et al., 2012

Unstable Beams: Electron Holes

e.g., Drake et al., 2003

Self Generated Turbulence: 3D PIC

- Initially laminar state
- Self-generated turbulence
 - Current density with yellow magnetic field lines.

Daughton et al., 2011

Outline

- Primer on Reconnection
- Observing Electron Scales: MMS Mission
- "Simple" Electron Diffusion Regions
- Magnetic Islands and Self-Generated Turbulence
- Externally Imposed Turbulence
- Conclusions

Simulations: Magnetosheath Turbulence

- Global Hybrid Simulations of the Earth's Magnetosphere
 - Turbulent magnetosheath
 - Especially where quasi-parallel shock

- Turbulence all over the heliosphere
 - Solar Wind
 - Corona

Omidi et al., 2013

Observations: Turbulent Magnetosheath

Observations: Turbulent Magnetosheath: Single Crossing

Plasma Measurements Inadequate

Current Sheets and Reconnection in Turbulence

- 2D Kinetic-PIC Simulation
 - Wu et al., 2013

Distribution of Reconnection

Rates

- MHD Simulations of Basic Turbulence
- Turbulence can be viewed as a sea of reconnecting islands with different reconnection rates.

Servidio et al., 2009

Dissipation in Turbulence: Role of Current Sheets

Karimabadi et al, 2013

- 2D Kelvin-Holmholtz Kinetic PIC simulations
- Electron Scale
 Current Sheets
 may be
 important sites
 for Dissipation.

Turbulent Systems: Questions

- Any Reconnection at All?
- Distribution of Reconnection Rates
 - Are most current sheets reconnecting or not?
- Properties of the Reconnection
 - Similar to larger scale reconnection?
 - Or, completely different?
- Dissipation in the Current Sheets
 - Important for understanding properties of the magnetosheath?
 - Energetically important for plasmas in general?

Conclusions

- Electron Scales Play a Critical Role in Reconnection Dynamics
- MMS will provide the first chance to fully resolve these regions.
 - Laboratory for electron scale physics
 - Knowledge gained applicable throughout the heliosphere
- Where is the electron frozen-in constraint broken?
- Is reconnection turbulent or laminar?
- How is magnetic energy dissipated?
- How are electrons energized and heated?