Conductance: An essential element in MI Coupling

> M. Wiltberger NCAR/HAO

With thanks to O. Amm, J. W. Gjerloev, W. Lotko, J. G. Lyon, V. G. Merkin, S. Milan, C. L. Waters, B. Zhang

## Motivation

- To fully understand geospace we must treat the ionosphere and magnetosphere as a fully coupled system
- Ionospheric conductivity plays a key role in regulating the response of the coupled system
  - Essential role in the closure of field aligned currents and the location of energy deposition into the ionosphere and thermosphere
- Direct measurement of the ionospheric conductivity is extraordinarily difficult
  - Provides a unique opportunity for combining measurement and modeling techniques
- Ionospheric conductivity can have significant consequences on the response of the system to solar wind driving

# Outline

- Motivation & Background
  - System Structure
  - MI Coupling Basics
- Measurement
  - Particle Path
  - Current Potential Path
- Modeling
  - Knight FL
  - Advanced LFM with Ovation Prime comparison
- Impacts
  - Hemispheric Current Differences
  - Aurora and substorms
  - Magnetotail Dynamics
- Conclusions

### Magnetospheric Currents



Neutral Sheet Current

Magnetopause current systems are created by the force  $\bullet$ balance between the Earth's dipole and the incoming solar wind GEM - MIC Tutorial

Ring and R2 Currents



Currents in the ionosphere 20 Jun 14 GEM - MIC Tutorial

ullet

### Aurora and Conductance





• The aurora is formed by complicated process involving collisions between the energetic particles carrying the field-aligned currents and the ionosphere and leads to enhancements in conductance through out the aurora oval

### **MI** Coupling Equations

• As described in *Kelley [1989]* The fundamental equation for MI coupling is obtain by breaking the ionospheric current into parallel and perpendicular components and requiring continuity

$$\nabla \bullet \vec{J} = \nabla_{\perp} \bullet J_{\perp} + \frac{\partial J_{\parallel}}{\partial s} = 0$$

• Assuming no current flows out the bottom of the ionosphere we get

$$J_{\parallel} = \int_{\Delta s} \left( \nabla_{\perp} \bullet J_{\perp} \right) ds$$

• Further assuming the electric field is uniform with height we get

$$J_{\parallel} = \nabla_{\perp} \bullet \left( \vec{\Sigma} \bullet \vec{E}_{I} \right)$$

• And finally using and electrostatic approximation in the MI coupling region we obtain

$$J_{\parallel} = -\nabla_{\perp} \cdot \left( \tilde{\Sigma} \cdot \nabla_{\perp} \Phi \right)$$

# Outline

- Motivation & Background
  - System Structure
  - MI Coupling Basics
- Measurement
  - Particle Path
  - Current Potential Path
- Modeling
  - Knight FL
  - Advanced LFM with Ovation Prime comparison
- Impacts
  - Hemispheric Current Differences
  - Aurora and substorms
  - Magnetotail Dynamics
- Conclusions

#### Conductivity from Particle Measurements

• Initial work in determining ionospheric conductivity came based upon understanding the height structure of ionosphere and measurements of  $N_e$ , v,  $\Omega$ 



### **EUV** Conductance

• Combination of ISR, neutral models, and collision frequency leads to conductance models for solar contribution



## Auroral Zone Conductance

- Direct calculation from satellite observations of particle flux
- Inferred from auroral imaging



## Conductance from Fields

• It is possible to use sophisticated spherical vector calculus tools to compute the conductance from a combination of magnetic field perturbation observations and ionospheric electric fields

$$\vec{J}_{\perp} = \Sigma_{P}\vec{E}_{\perp} + \Sigma_{H}\left(\vec{B}\times\vec{E}_{\perp}\right) = \begin{pmatrix} \Sigma_{P} & \Sigma_{H} \\ -\Sigma_{H} & \Sigma_{P} \end{pmatrix} \bullet \vec{E}_{\perp} \qquad \vec{J}_{\perp} = \vec{J}_{cf} + \vec{J}_{df}$$
$$\vec{J}_{df} \text{ from ground mag}$$
$$\Sigma_{P} = \frac{\vec{J}_{\perp} \bullet \vec{E}_{\perp}}{\left|\vec{E}_{\perp}\right|^{2}} \quad \Sigma_{H} = \frac{\hat{r} \bullet \left(\vec{J}_{\perp} \times \vec{E}_{\perp}\right)}{\left|\vec{E}_{\perp}\right|^{2}} \qquad \vec{J}_{cf} \text{ from radial FAC}$$

 $\vec{E}_{\perp}$  from ion radar

## **Regional Determination**

- *Amm,* 2001 used the SECS approach to combine MIRICLE and BEAR magnetometer data with STARE RADAR observations to determine
  - Upward projection of magnetometer data for determination of  $J_{cf}$  requires assumption about  $\Sigma_H / \Sigma_P$



Curl-free elementary system



### **Global Determination**

- Green et al., 2007 Used Iridium, SuperDARN, Intermagnet observations to reconstruct Conductances over polar cap
  - Since Iridium provides  $J_{cf}\,$  no need to make assumption about  $\Sigma_{H}\!/\Sigma_{P}$
  - Uses Spherical Cap Harmonics instead of SECS



# Outline

- Motivation & Background
  - System Structure
  - MI Coupling Basics
- Measurement
  - Particle Path
  - Current Potential Path
- Modeling
  - Knight FL
  - Advanced LFM with Ovation Prime comparison
- Impacts
  - Hemispheric Current Differences
  - Aurora and substorms
  - Magnetotail Dynamics
- Conclusions

### Auroral Electron Fluxes

- *Fridman and Lemaire*, 1980 developed a kinetic model for the flux downward going electrons in the auroral acceleration region
- Starting with conservation of total energy and adiabatic invariants you get

$$E^{I} = E^{S} + E_{\parallel}$$
$$E^{I}_{\parallel} = E^{S}_{\parallel} - E^{S}_{\perp} \left(\frac{B^{I}}{B^{S}} - 1\right) + E_{\parallel}$$

• Integrating a isotropic distribution function over the region where precipitation occurs yields

$$F = F_o \frac{B^I}{B^S} \left[ 1 - \frac{e^{-xE_{\parallel}/E^S}}{1+x} \right] \text{ with } F_o = N_e \left( \frac{E^S}{2\pi m_e} \right)^{\frac{1}{2}} \text{ and } x = \frac{1}{B^I / B^S - 1}$$



### **Energy Fluxes**

• Considering the limit where the parallel potential drop is larger than the thermal energy in the source region we get the *Knight 1973* relationship between the FAC strength and the parallel potential drop

$$\varepsilon^{S} \ll \varepsilon_{\parallel} \ll \frac{\varepsilon^{S}}{x} \Longrightarrow x \ll \frac{x\varepsilon_{\parallel}}{\varepsilon^{S}} \ll 1$$
$$\varepsilon_{\parallel} \approx \frac{F\varepsilon^{S}}{xF_{o}B^{I} / B^{S}} \approx \left(\frac{B^{I} / B^{S} - 1}{B^{I} / B^{S}}\right) \left(\frac{\sqrt{2\pi m_{e}\varepsilon^{s}}}{N_{e}e}\right) J_{\parallel}$$

## Auroral Fluxes in the LFM

• Begin by computing the particle energy and number flux at the inner boundary of the LFM simulation domain

$$\varepsilon_o = \alpha c_s^2 \qquad \phi_o = \beta \rho \varepsilon_o^{1/2}$$

- $\alpha$  includes effects of calculating electron temperature from the single fluid temperature known in MHD
- $\beta$  includes effects possible effects plasma anisotropy and loss cone filling
- The initial number flux is the  $E_{\parallel}=0$  case of the Flux equation which allows for the inclusion of diffuse aurora
- The total energy of the particles is

$$E = E^{S} + E_{\parallel} = E^{S} + \frac{RJ_{\parallel} (E^{S})^{1/2}}{\rho}$$

• The factor R allows for scaling the parallel potential drop based upon the sign of the current and account for the possibility of being outside the regime of the scaling

## Auroral Fluxes in the LFM

• The final step is to compute the flux of precipitating electrons using the flux formula in regions of upward current or downward streaming electrons

$$\phi = \phi_o \left( 8 - 7e^{\frac{-\varepsilon_{\parallel}}{7\varepsilon_o}} \right) \quad \forall \quad \varepsilon_{\parallel} > 0$$

- Using  $B^{I}/B^{S} = 8$  for a dipole magnetic field and 2  $R_{E}$  gap between the source region and the ionosphere
- In regions of downward current we apply

$$\phi = \phi_o e^{\frac{\varepsilon_{\parallel}}{\varepsilon_o}} \quad \forall \quad \varepsilon_{\parallel} < 0$$

- With the additional correction that the factor R is taken to be 5 time smaller in these regions
- We also utilize the linearization the energy flux is simply the product of the energy and the number flux

## Conductances from Particle Flux

• *Spiro et al.* [1982] used Atmospheric Explorer observations to determine a set of empirical relationships between the average electron energy and the electron energy flux

$$\Sigma_P = \left(\frac{20E_0}{4+E_0^2}\right) \phi^{0.5} \qquad \Sigma_H = E^{0.625} \Sigma_P$$

• *Robinson et al.* [1987] revised the relationships using Hilat data and careful consideration of Maxwellian used to determine the average energy

$$\Sigma_{P} = \left(\frac{40E_{0}}{16 + E_{0}^{2}}\right) \phi^{0.5} \qquad \Sigma_{H} = 0.45E^{0.85}\Sigma_{P}$$

• *Hardy et al.* [1987] reports a version of the *Robinson et al.* with slight typographical error

$$\Sigma_P = \left(\frac{40E_0}{16 + E_0^2}\right)\phi^0$$

$$\Sigma_H = 0.45 E^{0.625} \Sigma_P$$

20 Jun 14

## Alternative Approach to e<sup>-</sup> precip

- Zhang noted the circular nature of using the Knight relationship to define the potential drop
- Alternative anomalous resistivity formulation based upon *Lotko and Shen 1991*

$$V = R' \frac{\overline{v} J_{\parallel}}{n_e}$$
 with  $R' = \frac{Rm_e \Delta l}{R_M e^2}$ 



From Zhang with Ovation Prime from *Newell et al.* 2010 21

## Improved Diffuse Precip



Zhang also noted need for improving the diffuse preciptation model - Use a DPB to specify non uniform values of  $\beta$  over the polar cap - Identify the

location of the cusp and set  $\beta=1$ inside that region

From Zhang with Ovation Prime from *Newell et al.* 2010 20 Jun 14

GEM - MIC Tutorial

# Outline

- Motivation & Background
  - System Structure
  - MI Coupling Basics
- Measurement
  - Particle Path
  - Current Potential Path
- Modeling
  - Knight FL
  - Advanced LFM with Ovation Prime comparison
- Impacts
  - Hemispheric Current Differences
  - Aurora and substorms
  - Magnetotail Dynamics
- Conclusions

## Global Field Aligned Currents



From Wiltberger et al. 2009

- Papitashvili et al. [2002] reported near ratio of 1.57 NS/SW and 1.00 NE/SE for conditions similar to those used in this study
  - We see 1.0 in equinox and approximately 1.8 for solstice

GEM - MIC Tutorial

• *Fedder and Lyon*, 1987 showed that the magnetosphere has currentvoltage relationship that similar to a simple circuit of a generator with internal resistance driving an external resistor as proposed by *Hill*, 1984

$$\Phi_{PC} = IR_{PC} = \Phi_M - Ir$$

• In order to explain the ordering of the currents we need to expand this model to consider hemispheres with different conductivities



20 Jun 14

### Ohtani Current Study



- *Ohtani et al.* [2014] examined the dependence of FAC currents on solar illumination
  - Found similar scaling properties regardless of F107 levels
  - Conclude that ionospheric conductance plays a key role in SW-M-I coupling

### Conductance and BS and MP



- *Merkin et al.*, 2005 used LFM simulations with fixed Pedersen conductance to examine its influence on MI coupling with the same SW conditions
  - The shape and location of the MP & BS change with conductance
    - Also has an impact on the CPCP and can play a role in polar cap saturation

## Discrete Aurora and Conductance

- Newell et al., 1996 & 2002 examined DSMP data to find that discrete aurora rarely occur in regions of solar illumination or diffuse aurora
  - Presume that sufficient ionospheric conductivity exists to support MI coupling electric fields
  - Conclude that ionospheric conductivity is a "key factor" controlling discrete aurora occurrence





Adapted from W. Lotko using W05 and Cousins

IMF:  $B_z = -5 \text{ nT}$  SW:  $V_x = 400 \text{ km/s}, n = 8/\text{cm}^3$ 

• Yasuhara et al., 1983 explained this was a result of the meridional gradient in hall conductance at PC boundary

GEM - MIC Tutorial

#### **Conductance and Magnetotail Flows**





GEM<sup>20</sup> MIC Tutorial

10

-40

-40



-20 0 29 10 Adapted from W. Lotko

## Conductance and BBFs







## Conductance and BBFs







## Conclusions

- Conductance plays an essential role in the coupling of the magnetosphere ionosphere
- Understanding of the global conductance parameters is being advanced by clever combination of ground and space based magnetic field measurements combined with electric field observations
- Global models are implementing improved models of conductance as part of their development paths
- Ionospheric conductance has impacts
  - Distribution of currents and structure of bow show and magnetopause
  - Substorm levels show strong correlation with ionospheric conductance distribution
  - Models show role for conductance to control location and intensity of flows in the magnetotail

### References I

- Amm, O. (2001), The elementary current method for calculating ionospheric current systems from multisatellite and ground magnetometer data, Journal of Geophysical Research, 106(A), 24843–24856, doi:10.1029/2001JA900021.
- Fedder, J. A., and J. G. Lyon (1987), The solar wind-magnetosphere-ionosphere current-voltage relationship, Geophys. Res. Lett., 14, 880, doi:10.1029/GL014i008p00880.
- Fridman, M., and J. Lemaire (1980), Relationship between auroral electrons fluxes and field aligned electric potential difference, J. Geophys. Res., 85, 664–670, doi:10.1029/JA085iA02p00664.
- Green, D. L., C. L. Waters, H. Korth, B. J. Anderson, A. J. Ridley, and R. J. Barnes (2007), Technique: Large-scale ionospheric conductance estimated from combined satellite and groundbased electromagnetic data, J. Geophys. Res., 112(A5), A05303, doi:10.1029/2006JA012069.
- Hardy, D. A., M. S. Gussenhoven, and E. Holeman (1985), A statistical model of auroral electron precipitation, J. Geophys. Res., 90, 4229–4248.
- Knight, S. (1973), Parallel Electric Fields, Planet. Space Sci, 21, 741–750.
- Lotko, W., and M.-M. Shen (1991), On large-scale rotational motions and energetics of auroral shear layers, J. Geophys. Res., 96, 9549, doi:10.1029/91JA00446.
- Merkin, V. G., A. S. Sharma, K. Papadopoulos, G. Milikh, J. Lyon, and C. Goodrich (2005), Global MHD simulations of the strongly driven magnetosphere: Modeling of the transpolar potential saturation, J. Geophys. Res., 110(A), 9203, doi:10.1029/2004JA010993.
- Newell, P. T., T. Sotirelis, K. Liou, A. R. Lee, S. Wing, J. Green, and R. Redmon (2010), Predictive ability of four auroral precipitation models as evaluated using Polar UVI global images, Space Weather, 8(1), 12004, doi:10.1029/2010SW000604.

### **References II**

- Ohtani, S., S. Wing, V. G. Merkin, and T. Higuchi (2014), Solar cycle dependence of nightside fieldaligned currents: Effects of dayside ionospheric conductivity on the solar wind-magnetosphereionosphere coupling, J. Geophys. Res., 119(1), 322–334, doi:10.1002/2013JA019410.
- Papitashvili, V. O., F. Christiansen, and T. Neubert (2002), A new model of field-aligned currents derived from high-precision satellite magnetic field data, Geophys. Res. Lett., 29, 28, doi: 10.1029/2001GL014207.
- Robinson, R. M., R. R. Vondrak, K. Miller, T. Dabbs, and D. Hardy (1987), On calculating ionospheric conductances from the flux and energy of precipitating electrons, J. Geophys. Res., 92, 2565, doi:10.1029/JA092iA03p02565.
- Rasmussen, C. E., R. W. Schunk, and V. B. Wickwar (1988), A photochemical equilibrium model for ionospheric conductivity, J. Geophys. Res., 93(A9), 9831–9840, doi:10.1029/JA093iA09p09831.
- Spiro, R. W., P. H. Reiff, and L. J. J. Maher (1982), Precipitating electron energy flux and auroral zone conductances An empirical model, J. Geophys. Res., 87, 8215–8227, doi:10.1029/JA087iA10p08215.
- Weimer, D. R. (2005), Improved ionospheric electrodynamic models and application to calculating Joule heating rates, J. Geophys. Res., 110, A05306, doi:10.1029/2004JA010884.
- Wiltberger, M., R. S. Weigel, W. Lotko, and J. A. Fedder (2009), Modeling seasonal variations of auroral particle precipitation in a global-scale magnetosphere-ionosphere simulation, J. Geophys. Res., 114(A), 01204, doi:10.1029/2008JA013108.
- Yasuhara, F., R. Greenwald, and S. I. Akasofu (1983), On the rotation of the polar cap potential pattern and associated polar phenomena, J. Geophys. Res., 88(A7), 5773–5777, doi:10.1029/JA088iA07p05773.

### Extra slides

### Comments on Conductance

- In the direction parallel to B the electron velocity dominates over the ion velocity and conductivity in the parallel direction is quite large resulting  $E_{\parallel} \sim 0$  for scales larger than 1 km
- At high altitudes both the ions and electrons move with the ExB drift velocity due to fact the collision freq are much smaller than the gyro freq
- The electrons retain the ExB drift for the entire portion of the conducting ionosphere because the gyro freq remains larger than the collision freq
- The ratio of the ion gyro to collision freqs changes dramatically over the height of the ionosphere

$$\vec{I} = \sigma_P E_{\perp}' + \sigma_H \vec{b} \times E_{\perp}' + \sigma_{\parallel} E_{\parallel}' \vec{b}$$



#### Seasonal Dependence of Auroral Occurrence



- *Cattell et al.* [2006] used FAST observations to examine the relationship between solar illumination and downward energy flux
  - Results are quite similar to those reported by Newell et al. with DMSP observations
  - They are argue the difference is due to change in the scale height of the potential drop caused by the increased heating during solar illumination
  - An important additional point is the significant reduction in precipitation energy in the beams seen in the sunlit hemisphere

20 Jun 14

GEM - MIC Tutorial

#### Substorm Behavior



- The total energy flux is computed by integrating the energy precipitating electrons over the entire hemisphere
  - Equinox case shows a clear spike at the substorm onset time seen in the FAC and the simulated AL
  - No clear indication of abrupt increase flux present in either Winter or Summer cases
  - More flux is clearly flowing into Equinox
  - Interestingly Summer case has slightly more flux then Winter case

## LFM Magnetospheric Model

- Uses the ideal MHD equations to model the interaction between the solar wind, magnetosphere, and ionosphere
  - Computational domain
    - 30  $R_E < x < -300 R_E \& \pm 100 R_E$  for YZ
    - Inner radius at 2  $R_E$  altitude
  - Calculates
    - full MHD state vector everywhere within computational domain
  - Requires
    - Solar wind MHD state vector along outer boundary
    - Empirical model for determining energy flux of precipitating electrons
    - Cross polar cap potential pattern in high latitude region which is used to determine boundary condition on flow



## LFM Ionospheric Simulation

- 2D Electrostatic Model
  - Conservation of current
    - $\overline{\nabla \cdot (\Sigma_P + \Sigma_H)} \nabla \Phi = J_{\parallel} \sin(\eta)$
  - $J_{\parallel}$  determined at magnetospheric BC
- Conductivity Models
  - Solar EUV ionization
    - Creates day/night and winter/summer asymmetries
  - Auroral Precipitation
    - Empirical determination of energetic electron precipitation
- Electric field used for flow at magnetosphere  $\vec{V} = -\frac{\vec{E} \times \vec{B}}{R^2}$