Quantitative Modeling of Radiation Belt Dynamics: Overview and Challenges

> Weichao Tu West Virginia University 2015/06/16

Special Thanks to: J. M. Albert, W. Li, S. K. Morley, G. S. Cunningham, Y. Chen, R. H. W. Friedel, G. D. Reeves, X. Li

Outline

- Introduction of Radiation Belt Dynamics: Sources and Losses
- Advances in Quantitative RB Modeling: Models and Inputs
- Challenges and Opportunities

Radiation Belt Dynamics

- Outer electron belt is very dynamic!
- The complex dynamics is a delicate balance of source, transport, and loss.
- Understanding the dynamics is the No.1 goal of the NASA Van Allen Probes Mission.

Van Allen Probes (Aug 2012 - present)

• Color-coded: SAMPEX 2-6 MeV Electron Flux (in log).

[Courtesy of Xinlin Li]

Radiation Belt Dynamics: Sources

• External source: Inward radial transport due to interaction with ULF waves.

Radiation Belt Dynamics: Sources

- External source: Inward radial transport due to interaction with ULF waves.
- Internal source: Local acceleration due to interaction with VLF waves.

[Reeves et al., Science 2013]

Radiation Belt Dynamics: Losses

• Precipitation loss: pitch angle scattering by, e.g., VLF, EMIC waves.

Radiation Belt Dynamics: Losses

- Precipitation loss: pitch angle scattering by, e.g., VLF, EMIC waves.
- Magnetopause shadowing: outward radial transport (ULF waves) or magnetopause compression.

Outline

- Introduction of Radiation Belt Dynamics: Sources and Losses
- Advances in Quantitative RB Modeling: Models and Inputs
- Challenges and Opportunities

- Fokker-Planck diffusion models
- Convection-Diffusion models
- Test particle codes
- PIC & Hybrid codes

Inputs

Diffusion coefficients Boundary conditions

\rightarrow

Pros:

 Efficient, useful for global problems

Cons:

 $L * (R_{E})$

Ο

 Assumptions of quasilinear theory and diffusion physics

K (6 1986)

[Courtesy of Yue Chen]

Outputs

 $PSD(\mu,K,L,time)$

 $\dot{\mathbf{v}}$

Werler

Equatorial e-

Loss Cone

Outmost Drift Shell

- Fokker-Planck diffusion models
- Convection-Diffusion models
- Test particle codes
- PIC & Hybrid codes

Inputs

Diffusion coefficients Global E&B models

Pros:

 Include drift phase and convection physics, useful for seed population

Cons:

 Assumptions of quasilinearity and diffusion; performance of the global E&B models

Outputs

PSD(E, α , r, Φ , time)

[Courtesy of V. Jordanova]

- Fokker-Planck diffusion models
- Convection-Diffusion models
- Test particle codes
- PIC & Hybrid codes

Inputs

Global E&B models or Analytical wave models

\rightarrow

Pros:

 Include convection physics, no diffusion assumption

Cons:

 Performance of the global E&B models (if MHD fields, no VLF waves); computationally expensive.

Outouts

flux(E, α , r, Φ , time)

Energy (MeV)

[Elkington et al., JASTP 2004]

MHD Test Particle Simulation

[Courtesy of F. Toffoletto]

- Trace electrons under global LFM-RCM fields [Hudson et al., JGR 2015]
- Loss of MeV electrons by magnetopause shadowing and outward radial transport (enhanced ULF waves)

Test Quasi-Linear Theory

- Trace energetic electrons under a given wave model to test quasilinear theory and its limit.
- E.g., Tao [JGR 2012] found that for parallel propagating whistler waves, quasi-linear theory becomes invalid when the wave amplitude increases.

- Fokker-Planck diffusion models
- Convection-Diffusion models
- Test particle codes
- PIC & Hybrid codes

Inputs

Initial plasma and field conditions

Pros:

 Self-consistent wave particle interactions

Cons:

 Computationally expensive; limited coupling to global codes

Outputs

Wave growth and

interaction

[from LANL website]

- Fokker-Planck diffusion models
- Convection-Diffusion models
- Test particle codes
- PIC & Hybrid codes

Inputs

Initial plasma and field conditions

\Rightarrow

Pros:

 Self-consistent wave particle interactions

Cons:

 Computationally expensive; limited coupling to global codes

Self-

consistency

Outputs

Wave growth and

interaction

Global

efficiency

Fokker-Planck Diffusion Models

• 3D Fokker-Planck Equation [Schulz and Lanzerotti, 1974]:

$$\begin{split} \frac{\partial f}{\partial t} &= L^2 \frac{\partial}{\partial L} \left(\frac{D_{LL}}{L^2} \frac{\partial f}{\partial L} \right) + \frac{1}{G} \frac{\partial}{\partial K} \left(GD_{KK} \frac{\partial f}{\partial K} \right) + \frac{1}{G} \frac{\partial}{\partial \mu} \left(GD_{\mu\mu\mu} \frac{\partial f}{\partial \mu} \right) \\ &+ \frac{1}{G} \frac{\partial}{\partial K} \left(GD_{K\mu} \frac{\partial f}{\partial \mu} \right) + \frac{1}{G} \frac{\partial}{\partial \mu} \left(GD_{\mu K} \frac{\partial f}{\partial K} \right) \end{split}$$

Simplified to 1D radial diffusion model at fixed μ and K:

$$\frac{\partial f}{\partial t} = L^2 \frac{\partial}{\partial L} \left(\frac{D_{LL}}{L^2} \frac{\partial f}{\partial L} \right) - \frac{f}{\tau} + S$$

τ: electron lifetime from pitch angle diffusion;*S*: electron source rate from energy diffusion

- Useful when radial diffusion is the dominant process.
- Need reliable inputs for D_{LL}, lifetime and source rate.

1D Radial Diffusion Model

• [Tu et al., JGR 2009]

$$\frac{\partial f}{\partial t} = L^2 \frac{\partial}{\partial L} \left(\frac{D_{LL}}{L^2} \frac{\partial f}{\partial L} \right) - \frac{f}{\tau} + S$$

- Goal: to reproduce the PSD dynamics observed at L=4 (with data-driven outer boundary at L=6)
- Empirical inputs: $D_{LL}(Kp, D_0) = D_0 \times 10^{(0.506Kp-9.325)} L^{10}$ $S(AE, S_0) \text{ and } \tau(AE, Dst, \tau_0)$

1D Radial Diffusion Model

• [Tu et al., JGR 2009]

$$\frac{\partial f}{\partial t} = L^2 \frac{\partial}{\partial L} \left(\frac{D_{LL}}{L^2} \frac{\partial f}{\partial L} \right) - \frac{f}{\tau} + S$$

- Goal: to reproduce the PSD dynamics observed at L=4 (with data-driven outer boundary at L=6)
- Empirical inputs: $D_{LL}(Kp, D_0) = D_0 \times 10^{(0.506Kp-9.325)} L^{10}$ $S(AE, S_0) \text{ and } \tau(AE, Dst, \tau_0)$
- Model results: well-reproduce the dynamics by all three different runs.
- Uncertainties in the model inputs: D_{LL}, electron lifetime, and source rate

1D Radial Diffusion Model

 Z. Li et al. [JGR 2014] simulated the 1-month Van Allen Probes interval in March 2013.

$$\frac{\partial f}{\partial t} = L^2 \frac{\partial}{\partial L} \left(\frac{D_{LL}}{L^2} \frac{\partial f}{\partial L} \right) - \frac{f}{\tau}$$

- The 1st enhancement at the beginning of March is reproduced by radial diffusion from a source at larger L.
- The Mar 17 storm enhancement is under-reproduced by radial diffusion only.

- Simplified to 2D momentum-pitch angle diffusion at fixed L
- Useful to model fast local acceleration and losses, when radial diffusion is not dominant.

- [W. Li et al., JGR 2007]: Applied a 2D diffusion model to study the acceleration and loss effects from different types of waves, located at different local times.
- Diffusion coefficients are calculated from static wave inputs specified for dayside/nightside chorus, EMIC, and hiss waves.

- Advance in model inputs:
 - [Thorne et al., Nature 2013]
 - Event-specific and global chorus wave model derived from POES proxy
 - Ambient plasma density derived from in situ data
- Model well-reproduced the strong RB enhancement up to 7.2 MeV

$$\begin{split} \frac{\partial f}{\partial t} &= L^2 \frac{\partial}{\partial L} \left(\frac{D_{LL}}{L^2} \frac{\partial f}{\partial L} \right) + \frac{1}{\Gamma} \frac{\partial}{\partial \alpha} \left(\Gamma D_{\alpha \alpha} \frac{\partial f}{\partial \alpha} \right) + \frac{1}{p^2} \frac{\partial}{\partial p} \left(p^2 D_{pp} \frac{\partial f}{\partial p} \right) \\ &+ \frac{1}{\Gamma} \frac{\partial}{\partial \alpha} \left(\Gamma D_{\alpha p} \frac{\partial f}{\partial p} \right) + \frac{1}{p^2} \frac{\partial}{\partial p} \left(p^2 D_{p \alpha} \frac{\partial f}{\partial \alpha} \right) \end{split}$$

- Many different versions have been developed in the past 10 years:
 - VERB (UCLA), DREAM3D (LANL), Dilbert? (Albert), REM (Rice), BAS model, Salammbô (French), STEERB (China) ...
- Inputs: Diffusion Coefficients
- Boundary Conditions:

x=0	PSD=0 (atmosphere)
a=π/2	dPSD/da=0
_=1	PSD=0 (atmosphere)
_=L	outer boundary

E=E_{max} E=E_{min} PSD=0 seed population (100 KeV)

- VERB results from Subbotin et al. [JGR 2011]
- Long-term simulation of the CRRES interval to model the effects from different diffusion processes.
 - Best reproduce the observations by including all the diffusion processes
- Wave and plasma inputs: dynamic but still empirical (as a function of Kp).

Electron flux (E=1MeV, α =85 deg)

- Need event-specific inputs for very strong events.
- [Tu et al., GRL 2014]: DREAM3D
 - Model the strong enhancement during the Oct 2012 storm.

- Need event-specific inputs for very strong events.
- [Tu et al., GRL 2014]: DREAM3D
 - Model the strong enhancement during the Oct 2012 storm.

- Need event-specific inputs for very strong events.
- [Tu et al., GRL 2014]: DREAM3D
 - Model the strong enhancement during the Oct 2012 storm.

- Need event-specific inputs for very strong events.
- [Tu et al., GRL 2014]: DREAM3D
 - Model the strong enhancement during the Oct 2012 storm.
 - Event-specific chorus waves

- Need event-specific inputs for very strong events.
- [Tu et al., GRL 2014]: DREAM3D
 - Model the strong enhancement during the Oct 2012 storm.
 - Event-specific chorus waves

- Need event-specific inputs for very strong events.
- [Tu et al., GRL 2014]: DREAM3D
 - Model the strong enhancement during the Oct 2012 storm.
 - Event-specific chorus waves
 - Event-specific seed electrons

- Need event-specific inputs for very strong events.
- [Tu et al., GRL 2014]: DREAM3D
 - Model the strong enhancement during the Oct 2012 storm.
 - Event-specific chorus waves
 - Event-specific seed electrons

3D Model: Co-operative Physics

- Old: Is radial diffusion the dominant acceleration mechanism or local acceleration?
- New: How do RD, local heating, pitch angle scattering work together to produce the observed acceleration and loss of RB electrons?

3D Model: Co-operative Physics

- Old: Is radial diffusion the dominant acceleration mechanism or local acceleration?
- New: How do RD, local heating, pitch angle scattering work together to produce the observed acceleration and loss of RB electrons?

3D Model: Co-operative Physics

- Old: Is radial diffusion the dominant acceleration mechanism or local acceleration?
- New: How do RD, local heating, pitch angle scattering work together to produce the observed acceleration and loss of RB electrons?

 3D model implies loss mechanisms: outward RD + precipitation

Advance in RB Models

- Great variety!
 - Fokker-Planck diffusion models
 - Convection-Diffusion models
 - Test particles codes
 - PIC & Hybrid codes
- Advances in modeling techniques
 - E.g., 1D diffusion \rightarrow 2D diffusion \rightarrow 3D \rightarrow 4D
- Advances in model inputs:
 - E.g., chorus wave model:
 Static → Dynamic but empirical → Event-specific
 - Made possible by the extensive measurements from multiple missions!

THEMIS

Van Allen Probes

Outline

- Introduction of Radiation Belt Dynamics: Sources and Losses
- Advances in Quantitative RB Modeling: Models and Inputs
- Challenges and Opportunities

Reproduce the Storm Responses

Complex storm responses of RB electrons:

POLAR/HIST 1.2-2.4 MeV electron flux

[Reeves et al., GRL 2003]

Reproduce the Storm Responses

Complex storm responses of RB electrons:

Reproduce the Storm Responses

Complex storm responses of RB electrons:

"You have modeled one storm, you have modeled one storm"?

- Challenge: Can we model the complex storm variability and, more importantly, predict the various storm responses?
- Opportunities: Improve the model inputs & Include new physics.

Better Model Inputs

- Current RB models are mature enough, but need better and more accurate model inputs.
- E.g., for diffusion-type models:
 - Radial diffusion coefficient D_{LL}

D_{LL}(Kp) [Ozeke et al., JGR 2012] Multiple ground magnetometers YORGML PINA ISLL GILL FCHU

L Shell

Event-specific D_{LL}

Global ULF waves from:

Van Allen Probes

Better Model Inputs

- Current RB models are mature enough, but need better and more accurate model inputs.
- E.g., for diffusion-type models:
 - Radial diffusion coefficient D_{LL}
 - Event-specific and global distribution of various waves
 - Better plasma density and plasmapause models
 - Reliable magnetic field models

Coupling between RB, Ring Current, and Plasmasphere

Explore New Physics

- Important to study new physics and quantify its importance.
- E.g., drift shell splitting → anomalous diffusion [O'Brien, GRL 2014]
- Effects of drift shell bifurcation
- Nonlinear, non-resonant wave particle interactions

L(α)

Drift shell splitting

01

GEM FG: QARBM (Pronounce: "CHARM")

- Focus Group of "Quantitative Assessment of Radiation Belt Modeling" (2014-2018)
- Co-chairs: Jay Albert, Wen Li, Steve Morley, Weichao Tu
- Goals:
 - Bring together the current state-of-the-art RB models and new physics.
 - Develop event-specific and global RB model inputs (waves, plasma, seed population, magnetic fields).
 - Combine all these components to achieve a quantitative assessment of the RB modeling by validating against real-time measurements.
- Activities:
 - A review of current RB models and required inputs (last year).
 - "RB buildup" and "RB dropout" Challenges (starting this year).
 - Joint activities with other FGs.

Summary and Conclusions

Thank you!

- Radiation belt is a very dynamic and complicated system due to the delicate balance between source, transport, and loss.
- Great progress has been made in quantitative modeling of radiation belt dynamics:
 - Advances in state-of-the-art models
 - Advances in model inputs
- Challenges on reproducing the complex storm responses, improving model inputs, and exploring new physics.