Earth magnetotail current sheet: observations vs. models

Anton Artemyev IGPP/UCLA

in collaborations with: Vassilis Angelopoulos (IGPP/UCLA), San Lu (IGPP/UCLA), Anatoliy Petrukovich (IKI/RAS), Andrei Runov (IGPP/UCLA), Ivan Vasko (SSL/UCB), Lev Zelenyi (IKI/RAS).

Location and plasma parameters

Plasma β – ratio of plasma and magnetic field pressures Mach number M – ratio of plasma bulk velocity and magnetosonic speed

The simplest current sheet configuration

Diamagnetic plasma current

$$j_y = -c \frac{T}{B_x} \frac{dn}{dz}$$

Self-consistent fields and plasma motion

Spacecraft missions and available datasets

r~55R_■

THEMIS 2008-2009

Outline:

- Current sheet structure: distributions of currents and plasma, embedding, main gradients
- Current carriers in the magnetotail: electron and ion contributions
- **Pressure balance**: role of plasma anisotropy/nongyrotropy in current sheet balancing
- Electric fields: mechanisms of generation, typical amplitudes
- Current sheet thinning: pre-reconnection conditions in the magnetotail

Current sheet structure: thin current sheets

Typical CS thickness is about 2000 km << R_E

Current sheet structure: embedding

Electron and ion pressure gradients are mainly supported by temperature gradients

$$\nabla P_{-} \approx N_{-} \nabla T_{-}, \quad \nabla P_{+} \approx N_{+} \nabla T_{+}$$

Petrukovich et al., 2015

CS structure: observations vs. simple kinetic models

Harris CS model with 10-20% of cold background plasm

Observed current sheets

- Lobes are filled by rarified cold plasma, but CS boundaries are hot due to uniform temperature.
- Plasma density profile is very close to the current density profile

- Lobes and CS boundaries are filled by dense cold plasma.
- Current density profile is embedded into plasma density profile

CS structure: what model can reproduce CS structure?

Kinetic models do not describe strong temperature gradients for 2D (x,z) CS configurations, but can reproduce embedded current density profile

see also Schindler & Birn 2002; Sitnov et al., 2006; Zelenyi et al. Hybrid simulations (MHD electrons + kinetic ions) are flexible enough to reproduce both embedding and temperature distributions.

see also Lin et al. 2015, Lu et al. 2016

Current carriers: absence of ion currents

Current carriers: unexpectedly strong electron currents

Three data sets show the same effect of strong electron currents and weak ion currents. Plasma (ion + electron) currents are close to B-gradient derived from multispacecraft currents (Cluster) from measurements CS or oscillations/flapping (Geotail, THEMIS).

see also Vasko et al., 2015; Petrukovich et al., 2015; Artemyev et al., 2016

THEMIS

15

15

10

10

Current carriers: observations vs. models

Conservation of total plasma momentum in volume ${\cal V}$

Kinetic thin CS formation

Pressure balance: expected gradients

static pressure balance

$$\sum_{\pm} \nabla \hat{p}_{\pm} = \frac{1}{c} [\mathbf{j} \times \mathbf{B}]$$

Isotropic plasma pressure p_p=p₊+p₋

Balance along x

$$\frac{\partial}{\partial z}\left(p_p + \frac{B_x^2}{8\pi}\right) \approx 0, \quad \frac{\partial p_p}{\partial x} \approx \frac{1}{c}B_z j_y$$

Current density magnitude is defined by the lobe magnetic field distribution

$$j_{y} \approx \frac{c}{4\pi} \frac{B_{lobe}}{B_{z}} \frac{\partial B_{lobe}}{\partial x}, \quad B_{lobe} = \sqrt{8\pi p_{P}}$$

Pressure balance: statistical observations

Pressure balance: electron anisotropy

curvature force

$$\nabla p_{p} + \frac{\Lambda_{e}}{4\pi} \frac{\left[\mathbf{B} \times (\mathbf{B} \nabla) \mathbf{B}\right]}{B} = \frac{\left[\mathbf{j} \times \mathbf{B}\right]}{c}$$
$$p_{p} = p_{i} + p_{e\perp}, \quad \Lambda_{e} = \frac{4\pi (p_{e\parallel} - p_{e\perp})}{B^{2}}$$
at the equatorial plane (B_x=0)

$$j_{y} \approx \frac{c}{4\pi} \frac{1}{1 - \Lambda_{e}} \frac{B_{lobe}}{B_{z}} \frac{\partial B_{lobe}}{\partial x}$$

Field-aligned electron anisotropy helps balance current sheet. For Λ_e =1 the entire current density generated by curvature electron drifts (d/dx=0)

There is a significant population of CSs with almost isotropic electrons

THEMIS observations

Pressure balance: observations vs. models

Observations

models

distribution function of ions supporting $p_{xz} \neq 0$

Ion nongyrotropy can balance CS

PIC simulation of thin CS

see also Eastwood 1972; Pritchett and Coroniti 1992; Ashour-Abdalla et al., 1994;

see also Sitnov et al., 2004; Zhou et al., 2009; Zelenyi et al. 2011

Electric fields: Hall field in thin CS

Dominance of electron currents requires strong electric fields E_x, E_z

$$v_{E\times B} = c \frac{\left[\mathbf{E} \times \mathbf{B}\right]_{y}}{B^{2}} = c \frac{E_{z}B_{x} - E_{x}B_{z}}{B^{2}}$$

$$E_z \sim \frac{v_{E \times B}}{c} B_x \sim \frac{j_y}{qn_+c} B_x \sim 1 \text{ mV/m}$$
$$E_x \sim E_z \frac{B_z}{B_{lobe}} < 0.1 \text{ mV/m}$$

Cluster & THEMIS can provide reliable electric field measurements only in CS (x,y) plane. Therefore, observed electric fields can be estimated only for strongly titled CS with $z \leftrightarrow y$

Cluster crossing of very intense CS

Statistics of quiet CSs

Vasko et al., 2014

Electric fields: field-aligned field

Electric fields: observations vs. models

Transverse electric field (Ex, Ez)

Field-aligned electric field (E_{II})

PIC simulations

Hybrid simulations

Analytical CS model

PIC simulations

220

0

see also Pritchett 2005; Zelenyi et al. 2011; Schindler et al. 2012;

Current sheet dynamics: thinning

McPherron et al. 1972

An example of thinning CS observed by THEMIS at x~-12R_E

Current sheet dynamics: plasma cooling

An example of thinning CS observed by THEMIS; plasma data are collected around the equatorial plane

Current sheet dynamics: observations vs. model

Birn & Hesse 2014

- Current sheet thinning is accompanied by (driven) pressure increase.
- Plasma entropy is conserved

$$pn^{-\gamma} \approx const$$
$$n \sim p^{3/5}, \quad T \sim p^{2/5}$$

Conclusions:

- **1.** CS embedding can be reproduced by simulations and analytical models
- 2. Temperature gradients well seen in observations, but are not included into kinetic simulations
- **3.** Thin CSs are characterized by strong electron currents (both in observations and simulation)
- 4. Estimations suggest significant contribution of ion nongyrotropy (not yet observed!) and electron anisotropy to the pressure balance
- 5. Strong transverse electric fields are seen in simulations, but more accurate observations are required to estimate these field in the magnetotail
- 6. Models and observations of the electron anisotropy indicate on a finite field-aligned field in the magnetotail (not yet observed!).
- 7. CS thinning is accompanied by plasma cooling, but this effect is not seen in simulations.

EARTH MAGNETOTAIL CURRENT SHEET

Predicted by models, but not yet observed

Geotail, Cluster, THEMIS, ARTEMIS

Well observed, but not yet modeled

Additional info

 $\mathbf{\nabla}$

Current sheet dynamics: current density growth

 B_{τ}

8

j_v nA/m²

10

TCS properties:

- CS thinning is not uniform process: larger initial B, in the near-Earth CS requires more significant B, decrease during thinning
- B_z is smaller at larger r, whereas j_y is larger at smaller r

Petrukovich et al., 2013

Modern CS models

2D solution with magnetic "hump"

2D solution with small population of nongyrotropic ions

Sitnov et al., 2007

2D solution with included dipole!

Sitnov & Merkin 2016

Sitnov & Schindler 2010

Recent reviews about CS structure & dynamics

- Artemyev, A. V., and L. M. Zelenyi (2013), Kinetic structure of current sheets in the Earth magnetotail, *Space Sci. Rev.*, 178, 419–440, doi:10.1007/s11214-012-9954-5.
- Baumjohann, W., et al. (2007), Dynamics of thin current sheets: Cluster observations, Ann. Geophys., 25, 1365–1389.
- Birn. J, et al. (2012) Particle acceleration in the magnetotail and aurora Space Sci. Rev. **173** 49–102
- Eastwood, J. P., H. Hietala, G. Toth, T. D. Phan, and M. Fujimoto (2015), What controls the structure and dynamics of Earth's magnetosphere?, Space Sci. Rev., 188, 251–286, doi:10.1007/s11214-014-0050-x.
- Egedal, J., A. Le, and W. Daughton (2013), A review of pressure anisotropy caused by electron trapping in collisionless plasma, and its implications for magnetic reconnection, *Phys. Plasmas*, 20(6), 061201, doi:10.1063/1.4811092.
- Ganushkina, N. Y., et al. (2015), Defining and resolving current systems in geospace, Ann. Geophys., 33, 1369–1402, doi:10.5194/angeo-33-1369-2015.
- Goldstein, M. L. et al. 2015 Multipoint observations of plasma phenomena made in space by cluster J. Plasma Phys. 81 325810301
- Petrukovich, A. A., A. V. Artemyev, I. Y. Vasko, R. Nakamura, and L. M. Zelenyi (2015), Current sheets in the Earth magnetotail: Plasma and magnetic field structure with Cluster project observations, *Space Sci. Rev.*, 188, 311–337, doi:10.1007/s11214-014-0126-7.
- Schindler, K. (2006), *Physics of Space Plasma Activity*, 522 pp., Cambridge Univ. Press, Cambridge.
- Sitnov, M. I., and V. G. Merkin (2016), Generalized magnetotail equilibria: Effects of the dipole field, thin current sheets, and magnetic flux accumulation, J. Geophys. Res. Space Physics, 121, 7664–7683, doi:10.1002/2016JA023001.
- Yoon, P. H. and Lui, A. T. Y., 2005 A class of exact two dimensional kinetic current sheet equilibria J. Geophys. Res. 110 A01202
- Zelenyi L M, Malova H V, Artemyev A V, Popov V Y and Petrukovich A A (2011) Thin current sheets in collisionless plasma: equilibrium structure, plasma instabilities, and particle acceleration *Plasma Phys. Rep.* 37 118–60
- Zelenyi, L. M., A. I. Neishtadt, A. V. Artemyev, D. L. Vainchtein, and H. V. Malova (2013), Quasiadiabatic dynamics of charged particles in a space plasma, *Phys. Uspekhi*, 56, 347–394, doi:10.3367/UFNe.0183.201304b.0365.