Tutorial

Magnetic reconnection in the age of the Heliophysics System Observatory

Li-Jen Chen
GSFC/UMD
Thank you for your contribution, Collaborators!

Shan Wang
Michael Hesse
Robert Ergun
Jim Burch
Craig Pollock
Roy Torbert
Benoit Lavraud
Levon Avanov
Tai Phan
David Malaspina
Stephan Ericksson

Ari Le
William Daughton
Dan Gershman
Thomas Moore
John Dorelli
Barbara Giles
William Paterson
Robert Strangeway
Chris Russell
Yuri Khotyaintsev

Rick Wilder
Amitava Bhattacharjee
Yi-Hsin Liu
Liang Wang
Vadim Roytershteyn
Jonathan Jara-AlMonte
Andrew Fazakerley
Jonathan Eastwood
Olivier LeContel
Stephen Fuselier
Lynn Wilson

Masaaki Yamada
Jongsoo Yoo
Hantao Ji
Matt Argall
Jason Shuster
Guanlai Li
Ruilong Guo
Chris Mouikis
Ian Cohen
Barry Mauk

+ other MMS & CLUSTER team members
Quiet current sheet: Width ~ 1-3 Re (at 20-30 Re from Earth) [Kaymaz et al., 2003; Petrukovich et al., 2007]
CLUSTER PEACE PAD HEEA & LEEA
Time in s since 2001-10-01 09:48:13 UT
Cluster ECS crossing

[Runov et al., 2003]

[Chen et al., 2008, 2009]
Quiet time and growth phase: $Wcs \sim 1\text{-}3\ Re$ (@20-30 Re from Earth)
During reconnection: $Wcs < 160\ km$
MMS: a fleet of 4 SC to unveil reconnection kinetic physics

- 3D eDFs:
 30 ms (2 orders of magnitude higher cadence than ever)
- 3D iDFs:
 150 ms

Continuous w/o data gaps!
X-line distribution → these accelerated e’s will be ejected from the reconnection layer... and precipitate into the ionosphere?

discrete populations with different # of bounces and amount of acc

[Shuster et al., 2015; Bessho et al., 2014]
In-plane electrostatic potential observed by CLUSTER [Wygant et al, 2008]
and in PIC and MRX

MRX (lab experiment) $\Phi_\text{f} (V)$

[Chen et al, 2008]

[Yamada et al, 2014]
How does the electrostatic potential (and fields) set up by reconnection ‘globalize’?
Impact of earthward fast flows on the ring current

Global Hybrid Model → CIMI equatorial H⁺ flux

Earthward fast flows

- t = 0:40 min
- Injection from the tail
- (82.5-177.8 keV)

- t = 1:30 min
- Penetration to L~3

Yu Lin, Xueyi Wang, Mei-Ching Fok, Natalia Buzulukova, J. D. Perez, Li-Jen Chen, and Lei Cheng
Connecting local processes and global dynamics
Relation between local reconnection and global dynamics

Global polar cap potential derived from data and simulation; reconnection rate along the 3D X-line [Cassak et al., 2017]

whether the global reconnection rate is determined only by solar wind parameters or affected by ionosphere/magnetosphere condition, [e.g., Borovsky et al., 2008, 2014; Zhang et al.2016]

Comparison of X-line location inferred by MMS observation with global model predictions [Trattner et al., 2016]

Nightside reconnection affects field-aligned currents that map to the ionosphere [e.g., Birn and Hesse 1991]
3D behaviors of reconnection

Where does 2D fail?

- An example: A new electron region populated by Msheath-like e’s in the magnetosphere inflow region...
Electron velocity distributions from MMS reveal e dynamics in the diffusion region

[Burch et al., 2016]
2D fails here!

Violating the scaling law,

\[T_{e\parallel} \propto n^2 / B^2 \]

[from Le et al., 2009, 2017]

[Wang et al., 2017]

[Khotyaintsev et al., 2016; Graham et al., 2017]
Enhanced transport of sheath e’s due to LH turbulence
[Le et al., 2017]
[Le et al., 2017]
[Le et al., 2018]
Reconnection and turbulence in 3D

‘Frustrated’ X-line generates more turbulence

[Liu et al., 2018]
Reconnection and turbulence in 3D

‘Realized’ X-line, more stable

[Liu et al., 2018]
Other 3D behaviors of reconnection

Kink-mode in magnetotail
[Sergeev et al., 2003; Karamabadi et al., 2003]

Lower-hybrid waves at magnetopause
[Le et al., 2017, 2018; Price et al., 2016, 2017; Wang et al., 2017; Graham et al., 2016, 2017]

Out-of-plane variations
[Genestreti et al., 2018; Chen et al., 2016; Zhou et al., 2018]

X-line expansion speed:

Simulation and theory: no guide field, speed of the current carrier, [e.g., Lapenta et al, 2016];
with guide fields, VA based on guide field, [e.g., Shepherd and Cassak, 2012]

THEMIS and SuperDarn dayside observation: weak guide field, either VA or current carrier speed; strong guide field, current carrier speed [Zou et al., 2017]
Determining the reconnection rate
Magnetopause

[Mozer et al., 2007]
Other measurements of the reconnection rate
e.g. Phan et al., 2001; Mozer and Retino, 2007; Wang et al., 2015; Chen et al., 2017
"Photo" the reconnection region with eDFs

MMS relative positions
2015-12-14/01:17:54

1d~2km

Bg~0.2 Br
Direct measurement of the Reconnection

$E_M \sim 0.1 [B0VA]$

Sheath EDR $B_g \sim 0.2 \, B_r$

[Chen et al., 2017]
Conjunctions: MMS, THEMIS, RBSP, CLUSTER, ...

MMS orbits