Overview of Missions Relevant to GEM

D. G. Sibeck Code 674 NASA/GSFC Greenbelt, MD 20771

Outline

- 1. Missions
 - a) Where do NASA missions come from?
 - b) Constellation, Microscale, Imaging Missions, and Highlights
 - c) Orbits, Duration, Instrumentation
- 2. Services
 - a) SPDF
 - b) CCMC
- 3. Future
 - a) Constellation and Imaging Missions
 - b) Searchable data systems
 - c) Global Hybrid and PIC code simulations

Where do NASA Missions Come From?

- Strategic Missions (STP and LWS)
 - Advisory panels like Decadal Survey and Heliophysics Roadmap consider, recommend, and prioritize
 - When individual missions get the go-ahead, Science and Technology Definition Teams work with engineers to define highest priority individual missions, prepare Announcement
 - Solar-Terrestrial Physics Program \rightarrow MMS
 - LWS Program \rightarrow Van Allen Probes
- Proposals from the Community
 - Explorers \rightarrow IMAGE, THEMIS, TWINS
 - − H-TIDES \rightarrow Cubesats, e.g. CeREs
 - Others

Missions

- Constellations
 - ISTP
 - THEMIS
- Multipoint microscale
 - Cluster
 - MMS
 - Van Allen Probes
- Imaging
 - IMAGE
 - TWINS
- Cubesats

International Solar-Terrestrial Physics (ISTP) Science Initiative (1990's)

ISTP Missions

ISTP Missions

ISTP Missions

ISTP Studies

• Wind observations + MHD model predict magnetotail twisting, flattening, and field line bending observed by Geotail [Berchem et al., 1998].

• Zelenyi et al. [2004] illustrated a chance ISTP configuration in which a burst of magnetotail reconnection generated sunward flow and dipolarization at Interball-1 (12 RE) and antisunward flows, streaming ions, and a plasmoid at Geotail (28 RE) just prior to auroral break up in ground observations [Petrukovich et al. 1998].

THEMIS (2007) Systematic Configurations to Study Global Magnetospheric Dynamics Auroral Current

In magnetotail for substorm studies during Winter 2008 and 2009 Pinpoint when and where substorm onset begins.

Apogees lined up at 9.9, 11.8, 11.8, 19.6, and 31.7 $\rm R_{\rm E}$ from Earth Perigees from 1.2 to 1.5 $\rm R_{\rm E}$

Inclinations from 7-12°

(R_E = Earth Radius)

Event		Observed time (UT)	Inferred delay (seconds since 04:50:03 UT)
Reconnection onset Reconnection effects at P1 Reconnection effects at P2 Auroral intensification High-latitude Pi2 onset Substorm expansion onset Earthward flow onset at P3 Mid-latitude Pi2 onset Dipolarization at P3 Auroral electroject increase	1 2 3	04:50:03 (inferred) 04:50:28 04:50:38 04:51:39 04:52:00 04:52:21 04:52:27 04:53:05 04:53:05 04:54:00	$T_{Rx} = 0$ 25 35 $T_{AI} = 96$ 117 $T_{EX} = 138$ 144 182 $T_{CD} = 182$ 237

Angelopoulos et al. [2008] reported evidence for the Out-to-In Model

ESA Cluster (2000)

- First 4-spacecraft mission (followed exemplary 2-spacecraft ISEE-1/2 and Interball missions).
- Distinguish between spatial and temporal variations, calculate currents.
- Employ spacecraft spin to collect full particle distributions/once per 4s spin period
- Foreshock, bow shock, magnetopause, auroral zone, magnetotail.....

• A 4-spacecraft mission to study the microphysics of reconnection

- A 4-spacecraft mission to study the microphysics of reconnection
- Close separations and multiple sensors

- A 4-spacecraft mission to study the microphysics of reconnection
- Close separations and multiple sensors provide the spatial/temporal resolution
- Needed to target reconnection microphysics

- A 4-spacecraft mission to study the microphysics of reconnection
- Close separations and multiple sensors provide the spatial/temporal resolution
- Needed to target reconnection microphysics

FEEPS(2) FEEPS(2)			
ADP CIDP HPCA SDP(2) DIS(2) Plasma Inflow DES(1) CEB DES(2)	Factor	Cluster	MMS
lons Decouple SDP(1) SDP(1) EDI(1) EDI(1)	Separation Distance	>4 km	~10 km
Plasma Outflow EDI(2) EDI(2)	Spin Period	4s	20s
Flactron SDP(3)	Magnetometer Cadence	67/s burst	128/s
Physics Dominates DES(4) DIS(4) DIS(4) DIS(3)	Plasma Cadence	4s	0.03s e- 0.150s ions
FEEPS(1) AEB ASPOC(2) AFG ADP			

- A 4-spacecraft mission to study the microphysics of reconnection
- Close separations and multiple sensors provide the spatial/temporal resolution
- Needed to target reconnection microphysics

Van Allen Probes

 Two identical, very well instrumented, radiation-hardened spacecraft to determine origins, transport, loss of radiation belt particles.

Comprehensive field and particle instrumentation

*

Van Allen Probes

Two point measurements identify gradients...
 and sources.

Reeves et al. [2013]

Indeed Chorus Wave Power Preceeds the Enhanced Fluxes [REPT/Spence]

IMAGE

- Single, polar, spacecraft to understand storms, substorms, and response to solar wind
- Multi-wavelength imaging: FUV (auroral oval), EUV (plasmasphere), ENA (ring current, magnetopause)
- Efforts to contact recently rediscovered spacecraft continue!

TWINS

- 2-spacecraft mission
- Stereo imaging in ENA- catches more structure and time variations

Goldstein and McComas [2018]

Cubesats

 Inexpensive, fast turnaround, great results.
 Example: U. Colorado CSSWE (Xinlin Li) observations of radiation belt electrons

CRAND Electrons

CSSWE Li et al. [2017]

NASA Magnetospheric In Situ

Mission	Launch	Stop	Orbit	Inclin	Ρ	В	E	EP	W
ARTEMIS	10/2010	Ongoing	Lunar 100 x 19000 km	Lunar 10°	Х	Х	Х	Х	Х
FAST	31/07/96	1/5/09	348 x 4159	83	Х	Х	Х		
IMP-8	26/10/73	26/7/06	22.2 x 45.3 RE	28.6	Х	Х		Х	Х
MMS	12/3/15	Operating	2550 x 70080 then X 152900	28	Х	Х	Х	Х	Х
Polar	24/2/96	28/4/08	3125 x 55113	79	Х	Х	Х	Х	Х
SAMPEX	3/7/92	30/06/04	512 x 687	81.7				Х	
THEMIS	17/2/07	Operating	470 x 87330	16	Х	Х	Х	Х	Х
Van Allen Probes	30/08/12	Operating	618 x 30414	10.2	Х	Х	Х	Х	Х

Foreign Magnetospheric In Situ

Mission	Launch	Stop	Orbit	Inclin	Ρ	В	E	EP	W
Akebono	22/02/89	23/04/15	270 x 8000 km	75°	Х	Х	Х	Х	Х
Arase	20/12/16	Ongoing	460 x 32110	31	Х	Х	Х	Х	Х
CLUSTER II	16/07/00 9/8/00	Ongoing	16000 x 117000	135	Х	Х	Х	Х	Х
Double Star EQU	29/12/03	14/10/07	570 x 78970	28.5	Х	Х		Х	Х
Double Star POL	25/07/04	??	700 x 39000	90	Х	Х		Х	Х
Equator-S	2/12/97	30/4/98	500 x 67300	3.75	Х	Х	Х	Х	
Geotail	24/7/92	Ongoing	51000 x 191000	10.5	Х	Х	Х	Х	х
Interball Tail/ Magion-4	3/8/95	10/00	500 x 200000	63	Х	Х		Х	Х
Interball Auroral/ Magion-5	29/8/96	Late 1998	? X 20000	63	Х	Х		Х	Х

Remote Sensing Missions

Mission	Launch	Stop	Orbit	Incli	VIS	EUV	FUV	X-ray	ENA
Akebono	22/02/89	23/04/15	270 x 8000 km	75°	Х		Х		
IBEX	19/10/08	Operating	59000 x 312200	26					Х
IMAGE	25/03/00	Still alive?	1000 x 46000	90		Х	Х		Х
Polar	24/2/96	28/4/08	3125 x 55113	79	Х		Х	Х	
TWINS	28/06/06 13/03/08	Operating Operating	1000 km x 7.2 RE	63.4					Х

Geosynchronous and Low Altitude Measurements

Mission	Altitude	Agency	Operational Series	Plasma	Mag	Energetic Particles	FUV/EUV Imager
LANL	5.6 RE	DoE	Operating	Х		Х	
GOES	5.6 RE	NOAA	Operating		Х	Х	
							P
DMSP	830 km	DoD	Operating	Х	Х	Х	Х
POES	807-870 km	NOAA	Operating			x	
AMPERE	780 km	Iridium	Operating		Х	NSF	

6

Cubesats

Mission	Launch	Stop	Orbit	Inclin	Measurements
CSSWE (CU- Li)	13/09/12	20/08/14	490 x 790 km	64.6°	Energetic Particles
CINEMA (UCB- Lin)	13/09/12	??	490 x 790 km	64.6	ENA, MAG
CeREs (GSFC- Kanekal)	Awaiting launch, summer, 2018		LEO	Polar	Energetic particles
CuPID (BU- Walsh)	Awaiting launch Fall 2019		LEO	Polar	Soft X-rays
ELFIN (UCLA- Angelopoulos)	Awaiting launch, Fall 2018		LEO	Polar	Energetic Particles, Magnetometer

Solar Wind Measurements

Mission	Start	Stop	Plasma	Magneto meter	Waves	Energetic Particles
ACE	25/8/97	Operating	Х	Х		Х
DSCOVR	11/02/15	Operating	Х	Х		
IMP-8	26/10/73	26/7/06	Х	Х	Х	Х
SOHO	2/12/95	Operating	Х			
Wind	1/11/94	Operating	Х	Х	Х	Х

Tools

- At GSFC:
 - Gifwalk
 - https://cdaweb.gsfc.nasa.gov/cgi-bin/gif_walk

Data Servers

- At GSFC
 - CDAWeb
 - SSCWeb
 - OmniWeb
- Elsewhere
 - -MMS
 - THEMIS
 - Van Allen Probes
 - ...

 Select zero OR more Sources (default = All Sources if >=1 Instrument Type is selected)

ACE AMPTE

ARTEMIS Alouette Apollo BARREL CNOF8 CRRE8

Cessini Cluster

Cubesats DE DMSP

DSCOVR Equator-8 FAST

GOE8 GP8 Genesis

Geotai

Hawkey Helics

MAGE

MP (AI) **ISEE** 1818

188 Interbell

LANL

MMS

Mariner

Munin NOAA

MESSENGER

New Horizons

POE8/MetOp

Pioneer Poler

8AMPEX

8NOE 80H0

8T5

8TEREO

THEMIS

OMNI (Combined 1AU IP Data; Magnetic and

ROCSAT-1(FORMOSAT-1)/IPEI

 Select zero OR more instrument Types (default = All Instrument Types if >=1 Source is selected)

Activity Indices
Electric Fields (space)
Electron Precipitation Bremsstrahlung
Engineering
Ephemeris/Attitude/Ancillery
Gemme and X-Rays
Housekeeping
Imaging and Remote Sensing (ITM/Earth)
Imaging and Remote Sensing
(Magnetosphere/Earth)
Imaging and Remote Sensing (Sun)
Magnetic Fields (Balloon)
Magnetic Fields (space)
Particles (space)
Plesme and Solar Wind
Radio and Plasma Waves (space)
Spacecraft Potential Control
Ground-Based HF-Radars
Ground-Based Imagers
Ground-Based Magnetometers, Riometers,
Sounders
Ground-Based VLF/ELF/ULF, Photometers

ACE

12:00:00 18 Feb 21

TIME RANGE=2018/2/21 (52) to 2018/2/22 (53)

15:00:00 18 Feb 21

20:00:00 18 Feb 21

AC MAG>ACE Magnetic Field Instrument H0>16-Sec Level 2 Data

릫뉟

Bx GSE Tr

By CSE

Bz GSE

00:00:00 18 Feb 21

04:00:00 18 Feb 21

08:00:00 18 Feb 21

Data Servers

Cdaweb.gsfc.nasa.gov

Data Servers

Sscweb.gsfc.nasa.gov

Other Data Servers

- MMS
- THEMIS (Includes GOES/POES)
- Van Allen Probes

Themis.ssl.berkeley.edu

Other Data Servers

- MMS
- THEMIS (Includes GOES/POES)
- Van Allen Probes

Other Tools

• SPEDAS/TDAS (THEMIS/CDAWeb, ERG, MMS, other missions)

SPEDAS MMS Ion Distribution Function

2015-08-15/12:50:03.923 - 12:50:57.923 (velocity)

SuperDARN radar

CCMC Services

- Instant Runs
 - Tsyganenko Magnetic Field
 - And others...

- Runs on Request (Global MHD Models)
 - BATS-R-US
 - Open GGCM
 - GUMICS

CCMC Services

- Inner Magnetosphere
 - Plasmasphere
 - RCM (PSD moments, Φ , J_{//},...)
 - Fok Ring Current, Radiation Belts, CIMI
 - VERB (rad belt electrons)

Future

- New missions
 - Global imaging and Constellation missions
- More cubesats
- Searchable data bases
 - Pattern recognition algorithms for use on large on-line data sets
- Global simulations on demand
 - Hybrid and PIC codes

New Missions

- Global Imaging
 - Not just FUV auroral, EUV plasmasphere, and 10's of KeV ENA ring current but also
 - 1 keV ENAs from magnetosheath

IBEX-Hi (0.7 - 6 keV)

 Simulations show Thomson scattering allows electron structures to x_{sst} [R_t] be imaged over 7.5 min integration times at 490-870 nm (NRL/ Damien Chua)
 Plasmasphere and Magnetosheath

New Missions

- Global Imaging
 - Not just FUV auroral, EUV plasmasphere, and 10's of KeV ENA ring current but also

- 0.1-1 keV soft X-rays from the magnetosheath and cusps (SMILE)

New Missions

"Magnetospheric Constellation DRACO: Dynamic Response and Coupling Observatory" Spacecraft (1/30)Spence/Moore Dispenser [2004]

Searchable Data Bases

- Large searchable data bases at the Virtual Magnetospheric Observatory and VIRBO +
- Automated pattern recognition tools to identify events \rightarrow
- Large event data sets for statistical analysis
- vmo.nasa.gov
- virbo.org

PIC and Hybrid Simulations

- CCMC PIC code runs on request
- Global Hybrid codes

Run on Request

We have generalized the initial condition

• An user can request a run with customized upstream conditions.

-- CCMC generates particle distribution & field & moment.

-- All data is published on-line & can be analyzed interactively using tools on CCMC.

Hybrid Code Simulations

2.5 D HFA at Bow Shock [Omidi and Sibeck, 2008]

3D Injections feed ring current Lin et al. [2014]

Conclusion

- This is a golden era for magnetospheric research. Many resources available to help you study the magnetosphere.
- In conjunction with ever improving simulations and data mining services, the observations we take now will serve as the basis of studies for years to come.

Conclusion

- This is a golden era for magnetospheric research. Lots of resources to study the magnetosphere. Enjoy it!
- In conjunction with ever improving simulations and data mining services, the observations we take now will serve as the basis of studies for years to come.
- What are you doing to plan and prepare for the next generation of missions?