

achine Learning in Space Physics

M.R. Argall, S. Piatt, C. Small, M. Petrik, K. Larson, K. Kokkonen, J. Barnum, F.D. Wilder, M. Oka, R.E. Ergun, T.-D. Phan, B.L. Giles, R.B. Torbert, J.L. Burch, W.R. Paterson

GEM Workshop, June 22-28, Santa Fe, NM

matthew.argall@unh.edu

Matthew Argall matthew.argall@unh.edu

Special thanks to the GEM Student Representatives

Apply for a GEM Focus Group on Machine Learning in Space Physics

Outline

Machine Learning

- What is it?
- Milestones
- Why it Matters
- What to use
- Applications in Space Physics
- Detailed Examples Using MMS Data:
 - \circ $\;$ $\;$ The Problem: Selecting burst intervals in MMS data $\;$
 - Recurrent Neural Networks
 - Hierarchical Bayesian Model
 - Expectation Maximization
 - Autoregression
 - Linear regression

Machine Learning

What is it?

Machine Learning is the science of getting computers to learn and act like humans do, and improve their learning over time in autonomous fashion, by feeding them data and information in the form of observations and real-world interactions.

Milestones in Machine Learning

The Turk

A chess-playing automaton built in 1770

Inspired Charles Babbage to design the Punchcard Computer

Computer Checkers

Frist application of machine learning by Arthur Samuel (IBM, 1959)

Field of study that gives computers the ability to learn without being explicitly programmed

AlphaGo

Computer beats humans at Go (2015)

A step closer to Terminator-like video game characters

Artificial Brain

Learns to identify cats by watching YouTube videos (2012)

Computer *learns* like a human

Why it Matters

Too Much Data for One Lifetime

Machine Learning can make it tractable ¹¹

Automating operations to enable more complex mission designs

What to Use

Cheat sheet for choosing initial approach

Packages for Python and R

HelioPy

Applications in Space Physics

Boubrahimi, et al., 2007

Decision Trees are easy to understand

Decision Trees can be used to predict solar energetic particle events using SOHO & GOES

18

Build a 3D magnetopause model using 15,089 magnetopause crossings from 23 different satellites

<u>Wang, et al., JGR, 2013</u>

19

Bayesian analysis uses probabilities to make inferences about new data

Extract signatures of the magnetopause boundaries with low SNR from IMAGE data

Hidden Markov Models predict the future using the present

Lundgren, KTH (PhD), 2011

Identify Kelvin-Helmholtz waves in Geotail data

Bortnik, et al., JGR, 2016 ijk g h 1 m b Ċ d f (a) Hidden 111 Layer 2 Hidden In] Hmys 111 LLI. Layer 1 Input 3000 -50 Layer Ouput 111 111 Layer -100 111 -10 -5 0 5 10 15 25 Time relative to 09-Mar-2008 [hours] 1000 (b) 08-Mar-2008 16:55:00 (h)09-Mar-2008 05:50:00 (m) 09-Mar-2008 20:00:00 Output [N,3] Input W₁ [4,5] Wo [7,3] [N,4] f_1 W₂ [5,7] O f_2

Neural networks mimic the brain's processing functionality

Used to predict state of inner magnetosphere using SYM-H and THEMIS data²²

Detailed Examples Using MMS Data

The Problem

Selecting burst intervals in MMS data

Magnetic reconnection drives the flow of energy throughout the magnetosphere

It is triggered by the microphysics of the Electron Diffusion Region (EDR).

The Region of Interest (ROI) encompasses locations likely to contain EDRs.

Only enough telemetry to downlink ~43 minutes of burst data per day

Burst Selections are made primarily by the Scientist in the Loop (SITL)

Need to automate the selection process

Three methods to select burst intervals

Small, C., In Prep

ML and MMS

Burst Triggers

Tune Burst Triggers

Equation 1. Cycle Data Quality (CDQ) Calculation

$$CDQ = \sum_{All} \left[TDN(i) + O(i) \right]^* G(i) / \sum_{All} G(i)$$

Tail ABS Table

TDN	DESCRIPTION	GAIN	OFFSE T
dB	dBx + dBy	1	0
dBz	dBz	2	0
1/ B	B inverse	4	30
ERMS1	Power density 10 – 100 Hz	5	0
Var Ion X Flux	Variance, spinning coords	1	150
Var Ion Y Flux	Variance, spinning coords	1	150

Dayside ABS Table (MP019)

TDN	DESCRIPTION	GAIN <i>, G</i>	OFFSET, O
dBz	dBz	2	0
ERMS1	EOMNI, Power Density 10 – 100 Hz	10	0
dB	dBx + dBy	2	0
Var Pe	Electron Pressure, Variance	1	0
Var Ni	Ion Density, Variance	1	0
Delta Ni	Ion Density, Delta of Mean	1	0

Identify EDRs

Equation 1. Cycle Data Quality (CDQ) Calculation

$CDQ = \sum_{All} [TDN(i) +$	$O(i)]^*G(i)/$	$\sum_{All}G(i)$

Tail ABS Table

TDN	DESCRIPTION	GAIN	OFFSE T
dB	dBx + dBy	1	0
dBz	dBz	2	0
1/ B	B inverse	4	30
ERMS1	Power density 10 – 100 Hz	5	0
Var Ion X Flux	Variance, spinning coords	1	150
Var Ion Y Flux	Variance, spinning coords	1	150

Small, C., In Prep

ML and MMS

Recurrent Neural Network with Long Short-Term Memory (LSTM)

Selections influence the SITL

Data

Preliminary model identifies the magnetopause

Larger training set should improve results

Piatt, S., UNH B.S., 2019

ML and MMS

A Hierarchical Bayesian Model

Hierarchical Model

Model and Assumptions

Hierarchical Model

Mixture Model

Simple Task to Identify Single Distribution

 $y = normal(\mu, \sigma) = normal(0, 2)$

39

Difficult to distinguish multi-modal data

40

Expectation Maximization

Expect a given data point to be within $\boldsymbol{\sigma}_i$ of $\boldsymbol{\mu}_i$

MMS's orbit takes it through different regions of space

Histogram the data to determine its distribution

Our Features are Generally Bimodal

$y_t \sim \lambda_t \cdot \mathcal{N}(\mu_{MSH}, \sigma_{MSH}^2) + (1 - \lambda_t) \cdot \mathcal{N}(\mu_{MSP}, \sigma_{MSP}^2)$

And can be represented as a mixture of two distributions

Our Data's Distribution

distributions

Hierarchical Model

Auto Regression

Independent and Identically Distributed Assumption

Log(DIS.T

Pearson's Correlation

Feature	Lag-1 Correlation
DIS.T	0.9920784
DIS.N	0.9903076
FGM.Bt	0.9457811
Clock Angle	0.7755246

BASED ON 3 MONTHS OF DATA.

Our time series parameters are not random variables.

46

Temporal relationship can build in a randomized component

HMM provides our likelihood function ⁴⁷

Hierarchical Model

Hierarchical Bayesian Modelling

The Hierarchical Model Ranks New Data by Their Likely Location

$$\lambda_t \sim \mathcal{N}(\lambda_{t-1}, \sigma_{\lambda}^2)$$

$$y_t \sim \lambda_t \cdot \mathcal{N}(\mu_{MSH}, \sigma_{MSH}^2) + (1 - \lambda_t) \cdot \mathcal{N}(\mu_{MSP}, \sigma_{MSP}^2)$$

$$\lambda_1 \rightarrow MSH; \lambda_0 \rightarrow MSP; \lambda_{0.5} \rightarrow MP$$
 49

Hierarchical Model

Linear Regression

Individual Parameter Probabilities are Combined into Single Priority Value

Priority $\sim \alpha + \beta_{Bt} \lambda_{Bt} + \beta_N \lambda_N + \beta_T \lambda_T + \beta_\theta \lambda_\theta$

Linear regression tells us which parameter is the best indicator of the MP

51

Model & Performance

This Model is Programmed in STAN

STAN:

- A probabilistic programming language written in c++.
- Uses a Gradient Descent based Markov Chain Monte Carlo algorithm for Bayesian inference.

```
Linear Regression Example in
STAN:
data {
    int N;
    vector[N] x;
    vector[N] y;
}
parameters {
    real alpha;
    real beta;
    real sigma;
}
model {
    y ~ normal(alpha + beta * x, sigma);
}
```

```
A simple linear regression example is only a few lines long
```

STAN/Python/R Do All The Work For You

```
Test Model
                   Training Model
model{
                                                                                                                                                   model{
    // Mixture model
                                                                                                                                                       // Mixture model
                                                                                                                                                      for (n in 1:numsteps){
    for (n in 1:numsteps){
                                                                                                                                                          target += log_mix(Bt_Mixture[n],
        target += log_mix(Bt_Mixture[n],
                                                                                                                                                                                          normal_lpdf(Bt[n] | Bt_mix[1], Bt_mix[3]),
                                               normal_lpdf(Bt[n] | Bt_mix[1], Bt_mix[3]),
                                                                                                                                                                                          normal_lpdf(Bt[n] | Bt_mix[2], Bt_mix[4]));
                                               normal_lpdf(Bt[n] | Bt_mix[2], Bt_mix[4]));
                                                                                                                                                          target += log_mix(N_Mixture[n],
                                                                                                                                                                                          normal_lpdf(N_log[n] | N_mix[1], N_mix[3]),
        target += log_mix(N_Mixture[n],
                                                                                                                                                                                          normal_lpdf(N_log[n] | N_mix[2], N_mix[4]));
                                               normal_lpdf(N_log[n] | N_mix[1], N_mix[3]),
                                               normal_lpdf(N_log[n] | N_mix[2], N_mix[4]));
                                                                                                                                                          target += log_mix(T_Mixture[n],
                                                                                                                                                                                           normal_lpdf(T_log[n] | T_mix[1], T_mix[3]),
                                                                                                                                                                                          normal_lpdf(T_log[n] | T_mix[2], T_mix[4]));
        target += log_mix(T_Mixture[n],
                                               normal_lpdf(T_log[n] | T_mix[1], T_mix[3]),
                                                                                                                                                          target += log_mix(Clock_Mixture[n],
                                               normal_lpdf(T_log[n] | T_mix[2], T_mix[4]));
                                                                                                                                                                                           uniform_lpdf(Clock_Angle[n] | Clock_mix[3], Clock_mix[4]),
                                                                                                                                                                                          normal_lpdf(Clock_Angle[n] | Clock_mix[1], Clock_sigma));
        target += log_mix(Clock_Mixture[n],
                                               uniform_lpdf(Clock_Angle[n] | Clock_mix[3], Cl
                                                                                                                                                      // Auro-Regression
                                               normal_lpdf(Clock_Angle[n] | Clock_mix[1], Clock_mix[
                                                                                                                                                       for (n in 2:numsteps){
                                                                                                                                                          Bt_Mixture[n] ~ normal(Bt_Mixture[n-1], Bt_mix_sigma):
                                                                                                                                                          N_Mixture[n] ~ normal(N_Mixture[n-1], N_mix_sigma);
    // Auro-Regression
                                                                                                                                                          T_Mixture[n] ~ normal(T_Mixture[n-1], T_mix_sigma);
    for (n in 2:numsteps){
                                                                                                                                                          clock_Mixture[n] ~ normal(Clock_Mixture[n-1], Clock_mix_sigma);
        Bt_Mixture[n] ~ normal(Bt_Mixture[n-1], Bt_mix_sigma);
        N_Mixture[n] ~ normal(N_Mixture[n-1], N_mix_sigma);
                                                                                                                                                  generated guantities {
        T_Mixture[n] ~ normal(T_Mixture[n-1], T_mix_sigma);
                                                                                                                                                      vector[numsteps] Priority;
        Clock_Mixture[n] ~ normal(Clock_Mixture[n-1], Clock_mix_sigma);
                                                                                                                                                      // Linear Regression
                                                                                                                                                      for (i in 1:numsteps){
                                                                                                                                                          Priority[i] = normal_rnq(mixture_alpha + Bt_beta * Bt_Mixture[i] +
    // Linear Regression
                                                                                                                                                                                                     N_beta * N_Mixture[i] + T_beta * T_Mixture[i] +
    Priority ~ normal(mixture_alpha + Bt_beta * Bt_Mixture +
                                                                                                                                                                                                     clock_beta * clock_Mixture[i], mixture_sigma);
                                           N_beta * N_Mixture + T_beta * T_Mixture +
                                           Clock_beta * Clock_Mixture, mixture_sigma);
                                                                                                                                                  }
}
```

The entire model is only 21 lines of code ⁵⁴

The SITL and Model are Sightly Different

- Selections tend to vary between scientists.
- Limited transmission bandwidth necessitates a priority system.
- Selections can sometimes miss parts of the magnetopause.

The model selects the entire magnetopause for all crossings

Visual Evaluation of One ROI

The model and SITL select similar regions; Model gives high weights to |B|

56

Selection Actual Predicted

Four More Orbits

Selection Actual Predicted

Point-by-Point Comparison Shows Agreement Between Model & SITL

• Average of 10,829 data points per day, 86,639 in total.

• 50% test, 50% train split.

Misclassification	13%
True Positive Rate	66%
True Negative Rate	89%
P-Value	46%

61

Evaluation would be more fair and favorable on a selection-by-selection basis

Model Summary

Summary

- Machine Learning is being used in more and more fields
 - Outperform humans at evermore complex tasks
- Impact of ML in Heliophysics is growing
 - Has helped analyze data in all regions of the heliosphere
- ML enables more complex mission design
 - Makes large volumes of data tractable
 - Simplifies complex mission operations schemes
- ML is helping MMS select its mission critical data
 - Ground loops can be tailored to specific campaigns or extended mission objectives
 - Neural networks and Bayesian models automate the SITL magnetopause selection process
- GEM Focus Group on Machine Learning in Space Physics
 - Email me at <u>matthew.argall@unh.edu</u>
 - Share your level of interest, your work, interesting papers