
Machine Learning in Space Physics

M.R. Argall, S. Piatt, C. Small, M. Petrik, K. Larson, K. Kokkonen, J. Barnum, F.D. Wilder, M. Oka, R.E. Ergun, 
T.-D. Phan, B.L. Giles, R.B. Torbert, J.L. Burch, W.R. Paterson

GEM Workshop, June 22-28, Santa Fe, NM
1

matthew.argall@unh.edu



Special thanks to the
GEM Student Representatives

2

Apply for a GEM Focus 
Group on Machine Learning 

in Space Physics

Matthew Argall
matthew.argall@unh.edu



Outline
Machine Learning
● What is it?
● Milestones
● Why it Matters
● What to use
● Applications in Space Physics
● Detailed Examples Using MMS Data:

○ The Problem: Selecting burst intervals in MMS data
○ Recurrent Neural Networks
○ Hierarchical Bayesian Model

■ Expectation Maximization
■ Autoregression
■ Linear regression 3



Machine 
Learning

What is it?
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Machine Learning is the science of 
getting computers to learn and act like 
humans do, and improve their learning 
over time in autonomous fashion, by 
feeding them data and information in 

the form of observations and real-world 
interactions.



Milestones in Machine 
Learning
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The Turk
A chess-playing automaton built in 1770

6
Inspired Charles Babbage to design 
the Punchcard Computer



Computer Checkers

Frist application of machine learning by 
Arthur Samuel (IBM, 1959)
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Field of study that gives computers the ability to 
learn without being explicitly programmed



AlphaGo
Computer beats humans at Go (2015)

8
A step closer to Terminator-like video 
game characters



Artificial Brain
Learns to identify cats by watching 

YouTube videos (2012)

9Computer learns like a human



Why it Matters
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Too Much Data for One Lifetime

11Machine Learning can make it tractable

In ~4 years!MMS:
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Automating operations to enable more complex 
mission designs

NASA’s Autonomous 
NanoTechnology Swarm (ANTS) 

explores asteroids



What to Use
13
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What to learn 
indicates how to learn.

Different learning 
methods to customize 
use



15Follow the workflow to find a starting point.

Cheat sheet for choosing initial approach
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Packages for Python and R

Data Handling Machine Learning Data Visualization

nnet
rpart

caret

e1071



Applications in Space 
Physics

17



Decision Trees can be used to predict solar energetic 
particle events using SOHO & GOES

Boubrahimi, et al., 2007
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Decision Trees are easy to understand



Build a 3D magnetopause model using 15,089 magnetopause 
crossings from 23 different satellites

Wang, et al., JGR, 2013 19

Support Vector Machines classify data into categories

LibSVM



Extract signatures of the magnetopause boundaries with low 
SNR from IMAGE data

Rilee & Green, 2000
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Bayesian analysis uses probabilities to make inferences about new data



Identify Kelvin-Helmholtz waves in Geotail data

Lundgren, KTH (PhD), 2011
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Hidden Markov Models predict the future 
using the present



Used to predict state of inner magnetosphere using SYM-H 
and THEMIS data

Bortnik, et al., JGR, 2016
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Neural networks mimic the brain’s processing functionality



Detailed Examples 
Using MMS Data 
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The Problem
Selecting burst intervals in MMS data
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It is triggered by the microphysics of the Electron 
Diffusion Region (EDR).
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Magnetic reconnection drives the flow of energy 
throughout the magnetosphere
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The Region of Interest (ROI) encompasses locations likely to 
contain EDRs.

Only enough telemetry to downlink ~43 minutes of burst data per 
day
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Burst Selections are made primarily by the Scientist in the Loop 
(SITL)

Need to automate the selection process



Three methods to select burst intervals
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Burst Triggers SITL (human)

Human/ML

Burst Interval Selection

Ground Loop

NN Bayes

I will discuss ML and the ground loop

On the Ground

Onboard

Bill Paterson



ML and MMS

Small, C., In Prep

Burst Triggers
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Tune Burst Triggers

TDN DESCRIPTION GAIN OFFSE
T

dB |dBx|+|dBy| 1 0

dBz |dBz| 2 0

1/|B| B	inverse 4 30

ERMS1 Power	density															
10	– 100	Hz

5 0

Var	Ion	X	
Flux

Variance,	spinning	
coords

1 150

Var	Ion	Y	
Flux

Variance,	spinning	
coords

1 150

Tail	ABS	Table
TDN DESCRIPTION GAIN,	G OFFSET,	O

dBz |dBz| 2 0

ERMS1 EOMNI,	Power	Density	
10	– 100	Hz

10 0

dB |dBx|+	|dBy| 2 0

Var	Pe Electron	Pressure,	
Variance

1 0

Var	Ni Ion	Density,	Variance 1 0

Delta	Ni Ion	Density,	Delta	of	
Mean

1 0

Dayside	ABS	Table	(MP019)



Identify EDRs
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TDN DESCRIPTION GAIN OFFSE
T

dB |dBx|+|dBy| 1 0

dBz |dBz| 2 0

1/|B| B	inverse 4 30

ERMS1 Power	density															
10	– 100	Hz

5 0

Var	Ion	X	
Flux

Variance,	spinning	
coords

1 150

Var	Ion	Y	
Flux

Variance,	spinning	
coords

1 150

Tail	ABS	Table

IONS

ELECTRONS

Vi

MAG

SITL	FOM

ABS	MDQ

ABS	FOM	
(predict)

Magnetotail	
EDR

FPI	Cal	
selection,		

not	
relevant



ML and MMS

Small, C., In Prep

Recurrent Neural Network with
Long Short-Term Memory (LSTM)

32
Identify magnetopause crossings where 
EDRs may occur
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Magnetopause Crossings Detection

SITL Selections and Comments Factor 
into the Model

MMS Mission 
Events
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Selections influence the SITL

And may one day replace 
the SITL



Preliminary model identifies the magnetopause

35Larger training set should improve results



ML and MMS

Piatt, S., UNH B.S., 2019

A Hierarchical Bayesian Model
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Mixture 
Model

Hidden
Markov 
Model

To detect magnetopause crossings



Model and 
Assumptions

Mixture Model Auto Regression
Linear Regression

Hierarchical Model
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Mixture Model

Mixture Model Auto Regression
Linear Regression

Hierarchical Model
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y = normal(𝛍, 𝛔) = normal(0, 2)
39

Simple Task to Identify Single Distribution



40%        y1 = fN(-2, 1)
60%        y2 = fN(1, 2)

y = 40

Difficult to distinguish multi-modal data 

Mixture models fit mixtures of distributions to 
extract priors



Expectation 
Maximization

Expect a given data point to be within 𝝈i
of 𝝁i
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MMS’s orbit takes it through different regions of 
space
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MSP MSPMSH

Histogram the data to determine its distribution



Our Features are Generally Bimodal

Log(DIS.N)

M
SH

M
SP
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And can be represented as a mixture of two distributions



Our Data’s Distribution

FGM.Bt

M
SP

M
SH

Log(DIS.T
)

M
SH

M
SP

Log(DIS.N)

M
SH

M
SP

Clock	Angle

M
SP

MSH
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Expectataion Maximization provides our prior 

distributions



Auto Regression

Mixture Model Auto Regression
Linear Regression

Hierarchical Model
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Independent and Identically Distributed
Assumption

Clock	Angle

Log(DIS.N)
Log(DIS.T
)

FGM.Bt

Feature
Lag-1	

Correlation

DIS.T 0.9920784

DIS.N 0.9903076

FGM.Bt 0.9457811

Clock	Angle 0.7755246

Pearson’s	Correlation	
Coefficient:

BASED ON 3	MONTHS OF DATA.
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Our time series 
parameters are not 
random variables. 



Temporal relationship can build in a randomized 
component

47HMM provides our likelihood function

MSP MSP MSH

Data Data Data

t-1 t t+1



Hierarchical Bayesian 
Modelling

Mixture Model Auto Regression
Linear Regression

Hierarchical Model
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The Hierarchical Model Ranks New Data by Their 
Likely Location

49𝝀1 → MSH; 𝝀0 → MSP; 𝝀0.5 → MP 



Mixture Model Auto Regression
Linear Regression

Hierarchical Model

Linear Regression
50



Individual Parameter Probabilities are Combined into 
Single Priority Value

51
Linear regression tells us which parameter is the best 

indicator of the MP 



Model & Performance
52



This Model is Programmed in STAN

STAN:
●A probabilistic programming 

language written in c++. 
●Uses a Gradient Descent based 

Markov Chain Monte Carlo 
algorithm for Bayesian inference.

Linear Regression Example in 
STAN:
data {

int N;
vector[N] x;
vector[N] y;

}
parameters {

real alpha;
real beta;
real sigma;

}
model {

y ~ normal(alpha + beta * x, sigma);
}

53
A simple linear regression example is only a few 

lines long 



STAN/Python/R Do All The Work For You
Training Model Test Model

54The entire model is only 21 lines of code



The SITL and Model are Sightly Different

●Selections tend to vary between scientists.

●Limited transmission bandwidth necessitates a priority system.

●Selections can sometimes miss parts of the magnetopause.
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The model selects the entire magnetopause for all 

crossings



56

Visual Evaluation of One ROI

The model and SITL select similar regions; Model 
gives high weights to |B|
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Four More Orbits
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Point-by-Point Comparison Shows Agreement 
Between Model & SITL

●Average of 10,829 data points per day, 
86,639 in total.

●50% test, 50% train split.

Misclassification 13%

True	Positive	Rate 66%

True	Negative	Rate 89%

P-Value 46%
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Evaluation would be more fair and favorable on a 
selection-by-selection basis



Model Summary

Linear	Regression

Mixture	Model

Auto	Regression
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Summary
● Machine Learning is being used in more and more fields

○ Outperform humans at evermore complex tasks

● Impact of ML in Heliophysics is growing
○ Has helped analyze data in all regions of the heliosphere

● ML enables more complex mission design
○ Makes large volumes of data tractable
○ Simplifies complex mission operations schemes

● ML is helping MMS select its mission critical data
○ Ground loops can be tailored to specific campaigns or extended mission objectives
○ Neural networks and Bayesian models automate the SITL magnetopause selection process

● GEM Focus Group on Machine Learning in Space Physics
○ Email me at matthew.argall@unh.edu
○ Share your level of interest, your work, interesting papers 63


