

(CGS | CENTER FOR GEOSPACE STORMS

Global Modeling of Mesoscale Transport

CENTER FOR GEOSPACE STORMS

Kareem Sorathia¹

V. Merkin¹ S. Ukhorskiy¹ A. Michael¹ J. Garretson¹

> ¹JHUAPL 2HKU ³NCAR/HAO

A. Sciola¹ J. Lyon⁴ B. Zhang^{2,3} F. Toffoletto⁵ S. Bao⁵ K Pham³ S. Blake⁶

> ⁴Dartmouth 5Rice ⁶NASA/GSFC

D. Lin³

AGE Multiscale Atmosphere-Geospace Environment

Transport in the Magnetosphere

The classical picture

Dungey cycle (1961)

- Southward IMF/terrestrial field lines merge on dayside
- Open lines swept over poles and reconnect in magnetotail
- Nightside reconnection drives Earthward return flow

Particle transport and acceleration

- Seed particles moved Earthward w/ return flow
- Shorter/stronger fields => Fermi/betatron acceleration
- Increasingly energetic particles are more dominated by curvature/gradient drift

Transport in the Magnetosphere

Real magnetospheres have curves

Nature exhibits structure on intermediate (~1Re) scales

Magnetotail convection

• Earthward flow is neither steady nor uniform, but bursty

Solar wind interaction

- Reconnection is patchy and intermittent, exhibits surges (flux-transport events; FTE's)
- Kelvin Helmholtz (KHI) vortices can act as a "diffusive" mechanism for transport across the magnetopause

Modeling transport in a global context requires capturing these "mesoscale" flow structures

Wiltberger+ 16

Background

Mesoscale convection via bubbles

Steady convection is inconsistent w/ observations

- Conservation of flux-tube integrated entropy (FTE = PV^{γ}) predicts unreasonably high pressure in the inner magnetosphere for steady convection (Erickson & Wolf '80)
- However, earthward convection is observed to be "bursty" (Baumjohann+ 90, Angelopoulos+ 92)
 - Bursts of 100's km/s
 - Typical sizes, 1-3 R_E (Nakamura+ 04, Liu+ 13)

Bubbles, bursts, and buoyancy

- Pontius & Wolf '90
- More recently recognized as mesoscale picture of transport and RC injection
- Azimuthally-localized reconnection effects create depleted flux-tubes w/ low FTE (bubbles)

CENTER FOR GEOSPACE STORMS

 Bubbles are (non-gravitationally) buoyant, move Earthward due to interchange instability

Why Does Convection Matter ...

To the magnetosphere?

Because it transports ...

- Dipolarizing flux
- Energetic particles into the RC/RB
- Free energy via thermal anisotropy to the wave populations of the inner magnetosphere
- MI-coupling via precipitation (conductance) and FAC's

The "transition region"

• is the bridge that connects the stretched magnetotail to the nearly-dipolar inner magnetosphere

How Does Mesoscale Convection Happen?

Many different kinds of transport can be mesoscale

Convection surge

- · Increase in the earthward flow/azimuthal E-field
- Thermal ions ExB drift towards Earth and adiabatically accelerated due to an increase in the ambient magnetic field
- Acceleration/transport continues until ions drift out of the flow due to the gradient-curvature drift

Magnetic gradient trapping

- Inverse magnetic field gradients associated with a dipolarization front form magnetic islands that can trap ions on the guiding center trajectories circling the front
- Trapping enables ions to propagate with the front earthward over multiple Earth radii producing efficient ion acceleration
- Ukhorskiy+ 17,18 (see also Gabrielse+ 17, Sorathia+ 18)

Other mechanisms

- Surfratron: Artemyev+ 12, Ukhorskiy+ 13
- Reflection: Zhou+ 10,11
- Betatron: Birn+ 12

Modeling Mesoscale Convection Via Bubbles

Regional simulations have been critical to building our understanding

How we got here

- Regional MHD, inner magnetosphere, PIC models have been crucial to building our core understanding of mesoscale transport
- Critical role of bubbles w/ stand-alone IMAG models: e.g. Yang+ 10-19, Wang+ 18, Sadeghzadeh+ 21, Lemon+ 04, Zhang+ 08
 - Injection of bubbles w/ pre-defined properties into the domain
- Importance of FTE-depletion and reconnection to transport w/ regional MHD: e.g. Birn+ 04,06,09,11,19
- PIC simulations of kinetic effects related to reconnection and onset and reconfiguration: e.g. Sitnov+ 13, Sitnov+ 14, Pritchett+ 14
- By no means exhaustive list!

Sadeghzadeh+ 21 (RCM-I)

ne Bz (upt=31)

Sitnov+ 14

Mesoscale Plasmasheet Injections Have Global Geospace Consequences

Cross-system Coupling and Feedback

Pembroke+ 12, Gkioulidou+ 14, Yang+ 13&15, Cramer+ 17, Bao+ 21

Injections => RC build-up => R2 currents => ionospheric closure => Joule heating => IT activated winds => conductance/outflow => feedback to the magnetosphere

Understanding cross-system coupling/feedback requires a global perspective!

Six Decades of Studying Magnetospheric Transport

Deserves more than six slides, but they told me to finish in 40

APL

See also ...

- Sitnov+ 19 SSR
- "Ring Current Investigations" (Jordanova++ 20)
- Gabrielse (Magnetosphere Online Seminar Series; MSOLSS)
- Previous GEM tutorials: Runov, Merkin (and Raeder from yesterday)
- Basically anything by R. Wolf

Next: Challenge of both global AND mesoscale modeling

Global Geospace Modeling

Geospace has lots of moving parts

Geospace pieces

- Global MHD (3D + moments)
- Inner mag model (2D + 1/2 energy, bounce-average)
- Ionospheric electrodynamics (current closure)
- Outflow models becoming critical

Not only global geospace model,

- SWMF, OpenGGCM, Gorgon, REPPU
- ANGIE3D, Vlasiator
- See MSOLSS seminars by Lyon, Raeder, Welling, Glocer, & Lin

Most of these are FLUID models

• 3 dimensions + a few moments is way easier

Will use MAGE as an example

- MAGE v1: GAMERA+RCM+TIEGCM
- Focus on the transition region, GAMERA+RCM

MAGE Design Roadmap

APL

Global MHD / IMAG Coupling

Global MHD (GAMERA; Zhang+ 19, Sorathia+ 20)

- Use non-orthogonal grid + constrained transport (divB=0)
- Use high-order reconstruction, 7th order PDM
- Input: E field from ReMIX, D/P ingestion information from RCM
- Output: Flux-tube averaged D,P and volume

Ionospheric Solver (ReMIX; Merkin & Lyon 10)

- Solves ionospheric current closure
- Input: MHD FAC's, RCM electron losses, MHD plasma moments
- Input + Conductance model => Output: E field

Inner Magnetosphere (RCM; Toffoletto+ 03)

- Bounce-averaged drift equations, 2D+1D (lat/lon + energy invariant)
- Energy invariant formulation gives 2D advection equation for each energy channel
 - Applies loss terms (CX, "WPI", FLC), uses boundary data provided by MHD
- · Evolves distribution function at each energy channel using boundary data provided by MHD
- Input: MHD flux-tube averages, E field
- Output: Target D,P to MHD and diffuse precipitation

Transition region has both fast flows and drift physics! Very challenging for both models!

See also: De Zeeuw+ 04, Pembroke+ 12, Glocer+ 13, Cramer+ 17

GAMERA+RCM

Global MHD / IMAG Coupling

Devil is in the details ...

Ingestion

- Want $S_{MHD} = S_{RCM}$, where $S = PV^{\gamma}$
- In MHD can change P but not V (directly)
 - Easiest to set $P_{MHD} = P_{RCM}$
- But there's a better way (suggested by R. Wolf)
 - Estimate change in V due to change in P
 - Results in same in low-beta limit, but better handles higher-beta
- MHD ingests on local Alfven bounce timescale

Plasmasphere (see talk by S. Bao)

- Plasmasphere "cold" channel using Gallagher IC
- Refilling using Denton+ 12 empirical dn/dt
- Dynamically evolves based on electrostatic potential
- Loss => conductance (see talk by D. Lin)
- Electron loss terms can go from very simple to guite complex
- Strong scattering, Chen+ 05, Chen+19
 - Chen+19: Includes empirical whistler/hiss $D_{\alpha\alpha}$ based on dynamically changing plasmapause
- Conductance combines MHD-based mono (Zhang+ 15) and diffuse informed by RCM + loss model

max: 36.5

40

0.0

2.5

30

00

20

Hall conductance [S]

10

 $^{-1}$

CENTER FOR GEOSPACE STORMS

Current density $[\mu A/m^2]$

10.0

max: 18.3

7.5

00

5.0

Energy flux [erg/cm²s]

Why Global AND Mesoscale Modeling

Global vs. local structures

Global picture (right)

- Low-res (DBL) GAMERA-RCM, Bastille Day storm
- Reproduces qualitative trends
- Is the 8-bit magnetosphere the whole picture?

Ionospheric resolution study (bottom)

- GAMERA only, $DBL^4 = QUAD^2 = OCT = HEX^{1/2}$
- Not cheap, HEX is 4000x cost of DBL
- HEX: 100k cpu-hours/model-hour

High resolution is needed to capture scales critical for certain kinds of cross-domain coupling (e.g. GICs)

しい

THEMIS White Light ASI

APL

Resolution is Important

But resolution isn't just the number of cells you have ...

It's what you do with 'em that matters

- Same grid but high-order reconstruction makes a dramatic difference in the ability to resolve structures
- Low-order requires 8x as many cells in each dimension as high-order for similar behavior (Zhang+ 19)
- In 3D this is ~4000x the computational cost

Start w/ SAME state on SAME grid

- Change diffusiveness of partial donor method (PDM) advection algorithm
- Diffusive PDM (top), GAMERA algorithm (bottom)
- Both OCT resolution grids

CENTER FOR GEOSPACE STORMS

TL;DNR

- Fluid modeling is "easy" (compared to kinetic)
 - 3D + some moments
- Fluid modeling is "hard" (objectively)
 - Highly resolved fluid modeling still ain't cheap even w/ highorder stencils and tailored geometry

Next: What we can (and can't) learn from current global models

Bubbles Matter For ...

Plasma and flux transport into the inner magnetosphere

Global (fluid) models can study bubble formation in a self-consistent(-ish) way

- Cramer+ 17 used OpenGGCM+RCM event survey to confirm critical role of bubbles seen in IMAG-only models
- Merkin+ 19 used LFM to show localized bursts are responsible for global dipolarization (see also Birn+ 19)
- Spacetime plots: "MLT" vs. time

But global (FLUID+IMAG) models don't have ...

- Transition region physics (self-consistent drifts + fastflows)
- Missing ion kinetic effects critical to substorm onset (e.g. TCS, see Stephens+ 19)
- Self-consistent (or any) anisotropy (see Lin+ 21)

CENTER FOR GEOSPACE STORMS

 Wave acceleration: KAW's (Cheng+ 20), broadband (Chaston+ 14)

GAMERA+RCM sim of Merkin+ 19 event

Mesoscale Bubbles Matter For ...

Plasma transport into the ring current

What's the role of length scale and gradients?

- Extend Ukhorskiy+ 18 that looked at trapping by seeding TPs into a single BBF
- 3D MHD (OCT)+ TPs (~20M)
- Here we create a TP "mirror" of the plasmasheet
 - MHD simulation of SMC-like period
 - T<0: Continuous injection,
 - T>0: Continue to evolve existing TPs
 - Weight TPs to match MHD moments

Visualization

- Marker area ~ log(wgt), wgt = # real particles/TP
- Marker position @ field-line projection to equator

Big caveat: No feedback from TPs!

Statistical Study of Transport

How does TP radial transport connect to MHD flow structure?

Transport vs. Flow

- Record transport/flow data for each (X_{EQ} , Y_{EQ}) in marked region
- Generate ~1B data points

Radial transport and acceleration of TPs

- ΔR_{EQ} = Change in position of field-line projection of TP to equator
- $V_{EQ} = \Delta R_{EQ} / \Delta T$

Quantifying mesoscale MHD flow

- $L_{\nabla B} = B/|\nabla B|$, characteristic magnetic field lengthscale
 - $L_{\nabla B} \sim 1-3 R_E$ in BBFs
- $\delta S = (S-S_0)/S_{0,}$ Relative buoyancy
 - S = Flux-tube integrated entropy
 - S₀ = Time-averaged background
 - Separates bubbles (δS<0) from blobs (δS>0)
 - See bubble-driven blobs similar to Yang+ 2011

Statistical Study of Transport

Importance of Mesoscale Bubbles

Bubbles very effective at transport

- Contribution to Occurrence ratio / Fraction of transport
- $\delta \mathcal{S} < 0$: 50% / 70%
- $\delta \mathcal{S} < -0.05$: 15% / 50%
- $\delta S < -0.20$: 3% / 30%

Bubbles are mesoscale

- $\Pr(R_E/2 < L_{\nabla B} < 3R_E | \delta \mathcal{S} < -0.2) \approx 80\%$
- Probability (mesoscale | deeply depleted)

"Drifting" particles are crucial to transport

- K > 20 keV : 16.5% / 50%
- $V_{\nabla}/V_{EB} \approx 0.8$

(**C**GS

• B = 5nT, E = 2.5 mV/m, K = 20 keV, $L_{\nabla B}$ = 2 R_E

This is gonna be a headache to model

CENTER FOR GEOSPACE STORMS

- Transition region will require both drift physics and fast flows
- MHD and RCM are both insufficient here! Need self-consistent transition region
- Consider statistics of bubble depletion @ 3 resolutions
 - Only at high resolution (~600 km in central plasma sheet) do we see evidence of numerical stability (at BBF scales)

$\mathsf{DBL}^4 = \mathsf{QUAD}^2 = \mathsf{OCT} = \mathsf{HEX}^{1/2} | 20$

Bubbles are ...

Unavoidably kinetic

Self-consistent ion kinetic physics, ANGIE3D

- Particle ions and fluid electrons
- Demonstrated formation of bubbles (Lin+ 17,Lin+ 21)
 - Bubbles created via reconnection, reduction in FTV
 - Pressure is anisotropic and varying along field line
 - Flow-braking and anisotropy generation w/ coupled IMAG model (CIMI)
- Non-MHD wave acceleration, KAW (Cheng+ 20)
 - E_{//} is effective for particle acceleration

But ...

- Computationally very demanding, typical sims are ~hrs
- Important multi-day geospace effects, e.g. storms

-15

-10

-5

5

10

15

CENTER FOR GEOSPACE STORMS

Y(R)

Wiltberger+ 2015

Bubbles in Models vs. Data

How do we compare mesoscale features in models and data?

Virtual spacecraft in simulations may not tell us much

- Geospace is a complex and non-linear system, probably won't predict every wiggle
- Uncertainty in upwind driving, parameterization/calibration of models (e.g. conductance)

Statistical comparisons

- Do models and data produce the same statistical relationships?
- Even then have to reconcile differences in model/data measurement density in space/time
 - Data: Low spatial density, long duration
 - Model: High spatial density, low duration

Mining simulation data

- Synthetic model event: Pure southward IMF to create SMC-like period
- Identify BBFs in model using event criteria of Ohtani+ 04 study w/ Geotail
- Find qualitatively similar features
- Less quantitative agreement, but hard to disentangle that from ambient plasmasheet state in synthetic simulation

0.1

300 250

200

0.2

U 0.1

01

CENTER FOR GEOSPACE STORMS

Ohtani+ 04

Bx By

Bz

mm

Epoch Time

Epoch Time

Bubbles in Models vs. Data

Thermodynamics of injected population

Runov++ 2015 (DATA)

- THEMIS data from 2008-2009
- Identify bubbles based on dBz/dt, |Bx|, and ρ
- ~300 events, Separate into 4 radial buckets
- Compare ratio of intruding & background
 - $Q_{In}/Q_{BG} (Q=\rho,kT,B_Z)$

MHD Flow data (MODEL)

 Separate intruding/background by depleted FTE/density

Qualitative comparison

- Don't expect identical values
- We have lots of data about 1 (idealized) event, versus sparse data of very many

	Intruding-Background Ratio of Flow Properties					
Radial Domain [R _E]	Density		Temperature		Vertical Magnetic Field	
	DATA	MODEL	DATA	MODEL	DATA	MODEL
R < 9.5	0.60±0.30	0.48	1.40±0.03	1.20	1.38±0.01	1.55
[9.5,12]	0.60±0.30	0.46	1.30±0.02	1.37	1.59±0.02	1.57
[12,15.5]	0.60±0.30	0.60	1.30±0.07	1.34	2.00±0.10	1.92
R > 15.5	0.60±0.30	0.81	1.40±0.08	1.22	2.10±0.20	1.98

How Can We Make Better Mesoscale Data-Model Comparisons?

And this time it's not the fault of modelers!

We need more mesoscale-resolving data to compare to!

- Data paucity makes it difficult to perform quantitative multi-scale validation
- Some conjunctions (e.g. Turner+ 17) can use >12 spacecraft to shed light on the mesoscale picture but these are rare
- TWINS ENA mesoscale imaging (Keesee+ 21)

How do we solve the data paucity problem?

- More missions! Ideally: constellation of in-situ probes in the plasmasheet (e.g. MagCon) and simultaneous ENA imaging
- Different ways of using data
 - Comparing w/ DM/ML models trained on in situ data (e.g. Stephens+ 19)
 - Comparing w/ information theory e.g. conditional mutual information (e.g. Wing & Johnson 19)
 - Gets at core question, "Will we learn the same thing from models and data?"

TL;DNR

- Bubbles matter
- They're hard to resolve
- And validate
- And they're unavoidably ion kinetic

What Next? Beyond MHD

Lots of interesting "beyond MHD" approaches being pursued

- Global hybrid (ANGIE3D)
- Vlasov-type models (Vlasiator, SPS)
- Embedded PIC (EPIC)
- Fluid + particles (kGlobal)
- Higher-moment closure (10; Gkeyll)
- Empirical reconstruction/Data-mining (TS07,SST)

But ...

- Geospace is big: need ion kinetic physics but also a highly resolved dynamic range (~100 Re to ~100 km) for ~day periods
 - Easy to spend 100k-hours/hr on single fluid MHD to get to resolved ion spatial scales
- So are supercomputers: We've got the first exascale supercomputers around the corner
 - · If we can figure out how to use them: Have to run increasingly complex models on increasingly complex hardware
 - And learn from them: How do we turn massive amount of simulation output into science?

So what's next?

- Boring (and best) answers: Depends on the application, all of the above: we should build our knowledge w/ patchwork of different methods/models while cross-validating w/ a rich ecosystem of different methods/implementations
- My less boring answer: Elastic approaches, methods that are easiest to dial up/down how kinetic the description is in different locations and use fluid/ fluid++ descriptions where possible. Leverage machine learning/data science/information theory to learn from massive model output.

Huge challenges ahead for cross-scale global modeling

Summary It's a great time to be a modeler!

Complex landscape to navigate

- Algorithmically complex, massively-coupled models
- Increasingly exotic supercomputing tech
- More observational data to assimilate/ingest
- Learning how to learn from massive simulation data sets
- How do we leverage machine learning while still doing human learning?

"May you live in interesting times" is supposed to be a curse ...

• But the alternative is way worse

APL

Plenty of opportunities for young people in modeling!

Students/Early-career: It's a great time to be a young modeler

- Why? Lots of opportunities to build new models, find clever new approaches, extend existing models
- How? Take interdisciplinary classes (math/computer science), become a killer coder, and start modeling
- (and having a lucrative tech job as a fall back option isn't nothing)

JOHNS HOPKINS APPLIED PHYSICS LABORATORY