A Novel Technique for Rapid L* Calculation

Kyungguk Min¹, Jacob Bortnik² and Jeongwoo Lee¹ I CSTR / NJIT, 2 Department of Atmospheric and Oceanic Sciences / UCLA

The Scientific Magnetic Mapping and Techniques Focus Group

Jun 18th

Motivation

- L* calculation is essential in radiation belt modeling.
- It is currently computationally expensive to compute L*.
- We propose a new rapid method that calculates L* from first principles.
 - Calculating L* at 181x181 (32761) grid is done in about 2 min.

L* is...

- Roederer's generalized L value:
 - $L^* = 2\pi k_0 / \Phi R_E$, $\Phi = \int \mathbf{B} \cdot d\mathbf{A} = \oint \mathbf{A} \cdot d\mathbf{I}$
 - Commonly used for quantifying radial transport in the radiation belts.
- Flux integration should be performed <u>along</u> <u>a closed curve in guiding drift shell</u>.

Closed Curve in Energy Space

Total energy:

 $W = PE + KE = qU + \mu_m B_m$

- $B_m(K)$: magnetic field magnitude at mirror point as function of K.

- K: modified longitudinal invariant K = $\oint \sqrt{(B_m - B(s))} ds$

Under conservation of energy and first two invariants, particle trajectory is isoenergy contours on a mirror point.

References:

"(U, B, K) Coordinates: A natural system for studying magnetospheric convection," Whipple, 1978 "Particle tracing in the magnetosphere: new algorithms and results," Sheldon and Gaffey, 1993

Comparison with LANL* and IRBEM: Input Setup

 Table 1. Input parameters for the neural network LANLstar.

Table from Koller and Zaharia [2010]

Number	Parameter	Description
1	ty	Integer number representing the year = 1996
2	<i>t</i> _{DOY}	Day of the year (int) = 6
3	<i>t</i> _{UT}	Universal Time in units of hours (float) = 1.24 (01h 14m 34s)
4	Dst	Disturbance storm time index (nT) = 7.78
5	$p_{ m SW}$	Solar wind dynamic pressure $(nPa) = 4.10$
6	B_y	<i>Y</i> component of the IMF field $(nT) = 3.72$
7	B_z	Z component of the IMF field $(nT) = 3 $
8–13	W_{1-6}	See Tsyganenko and Sitnov (2005) = [.12, .25, .09, .05, .23, 1.05]
14	$L_{\rm m}$	McIllwain value; Roederer (1970) = From IRBEM and UBK
15	<i>B</i> _{mirr}	Magnetic field strength at mirror point $(nT) =$ From IRBEM and UBK
16	$\alpha_{\rm loc}$	Local pitch angle (deg) = [90 60 30 10]°
17	r _{GSM}	Radial coordinate in GSM system (R_E) = [9 8 7 6 5 4 3]
18	$ heta_{ extbf{GSM}}$	Latitudinal coordinate in GSM (deg) = 0°
19	$\varphi_{ m GSM}$	Longitudinal coordinate in GSM (deg) = $ 80^{\circ}$
20	Vsw	Solar wind velocity (km/s) = 400.10
21	Φ	Electric potential (kV/R _E) = constant (i.e.W' = $\mu_m B_m$)

Comparison with IRBEM: Input Setup

Table 1. Input parameters for the neural network LANLstar.

Table from Koller and Zaharia [2010]

Number	Parameter	Description
1	ty	Integer number representing the year = 1996
2	<i>t</i> _{DOY}	Day of the year (int) = 6
3	t _{UT}	Universal Time in units of hours (float) = 1.24 (01h 14m 34s)
4	Dst	Disturbance storm time index (nT) = 7.78
5	$p_{ m SW}$	Solar wind dynamic pressure $(nPa) = 4.10$
6	B_{y}	<i>Y</i> component of the IMF field $(nT) = 3.72$
7	B_z	Z component of the IMF field $(nT) = 3 $
8–13	W_{1-6}	See Tsyganenko and Sitnov (2005) = [.12, .25, .09, .05, .23, 1.05]
14	$L_{\rm m}$	McIllwain value; Roederer (1970) = From IRBEM and UBK
15	<i>B</i> _{mirr}	Magnetic field strength at mirror point $(nT) =$ From IRBEM and UI
16	$\alpha_{\rm loc}$	Local pitch angle (deg) = [90 60 30 10]°
17	r _{GSM}	Radial coordinate in GSM system (R_E) = [9 8 7 6 5 4 3]
18	$ heta_{ extbf{GSM}}$	Latitudinal coordinate in GSM (deg) = 0°
19	$\varphi_{ m GSM}$	Longitudinal coordinate in GSM (deg) = $ 80^{\circ}$
20	Vsw	Solar wind velocity (km/s) = 400.10
21	Φ	Electric potential (kV/R _E) = constant (i.e.W' = $\mu_m B_m$)

Dipole vs. IGRF

L* (U=0): Comparison with IRBEM: Dipole Only

 $err = \sqrt{(\sum_{PA}(dL^*)^2/n_{PA})}$

L* (U=0): Comparison with IRBEM: IGRF Only

Comparison with IRBEM: Dipole+TS89 [SM]

Comparison with IRBEM: Dipole+TS05 [SM]

Comparison with IRBEM: Dipole+TS89 [GSM]

Comparison with IRBEM: Dipole+TS05 [GSM]

Summary

I. Trajectory calculation in energy space is preferable because

- No error accumulation due to numerical integration (only errors are from numerical interpolation),

- Strict conservation of energy and 2nd invariant (accurate contour and perfectly closed if closed),

 <u>Fast computation</u>: contour calculation is rapid (ex. contour plot) and independent of initial value of a particle, and

- Based on first principles only.

2. Preparation step is required to compute $B_m(K)$ and the time depends on the field model (≈ 10 minutes for TS05).

3. The difference (dL*) is generally less than 0.1 and this method outperforms, at least in a dipole-like magnetic field, the previous method based on Lagrangian approach.

End of slide