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Motivation

• L* calculation is essential in radiation belt 
modeling.

• It is currently computationally expensive to 
compute L*.

• We propose a new rapid method that 
calculates L* from first principles.

• Calculating L* at 181x181 (32761) grid is 
done in about 2 min.



L* is...

• Roederer's generalized L value:

• L* = 2πk0/ΦRE, Φ =∫B⋅dA =∮A⋅dl

• Commonly used for quantifying radial 
transport in the radiation belts.

• Flux integration should be performed along 
a closed curve in guiding drift shell.



Closed Curve in Energy Space

Total energy:
W = PE + KE = qU + μmBm

– Bm(K): magnetic field magnitude at mirror 
point as function of K.
– K: modified longitudinal invariant

K = ∮√(Bm-B(s)) ds 

Under conservation of energy and first two 
invariants, particle trajectory is iso-
energy contours on a mirror point.

References: 
"(U, B, K) Coordinates: A natural system for studying magnetospheric convection," Whipple, 1978
"Particle tracing in the magnetosphere: new algorithms and results," Sheldon and Gaffey, 1993
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Comparison with670 J. Koller and S. Zaharia: LANL⇤ V2.0: global modeling and validation

in units of Earth radii. In a dipole field, particles of any
pitch angle would also have the same L⇤ for a given point
in space (see also, Roederer, 1970; Schulz and Lanzerotti,
1974; Schulz, 1991). However, a simple dipole magnetic
field is not a sufficiently accurate representation, especially
for geosynchronous orbit at RE = 6.6 and beyond. In realis-
tic fields, particles with different pitch angles have different
L⇤’s for the same point in space.
One important challenge for modeling of the radiation

belts (and other populations in space) is that the charged par-
ticles moving in space form complex current systems that in
turn distort the geomagnetic field. The interaction of the so-
lar wind, magnetospheric, and ionospheric current systems
form an interconnected dynamic system that produces strong
distortions of the Earth’s field such that it no longer approxi-
mates a dipole and, indeed, requires sophisticated numerical
field models that are themselves subject of intensive research
(e.g. Chen et al., 2006; Wolf, 1996).
Many models of the geomagnetic field have been devel-

oped but both the pace of development and the numerical
sophistication of the models has increased dramatically in
the last several decades. Numerically simple models such
as the static Olson-Pfitzer model (Olson, 1974) have given
way to dynamic, statistical models driven by solar wind and
geomagnetic inputs. The models developed by Tsyganenko
and colleagues are representative and are among the most
widely used (Tsyganenko et al., 2003; Tsyganenko and Sit-
nov, 2005). The most recent version of these models (Tsy-
ganenko and Sitnov, 2007) is also the most computation-
ally intensive model. At an even higher level of complexity
are global magnetohydrodynamic models or physics based
plasma/field model (e.g. Zaharia et al., 2006) but both of
these models are sufficiently computer-intensive that they are
typically only used for analysis in limited and targeted stud-
ies.
The motion of particles in complex, realistic geomag-

netic field configurations can be closely approximated using
“guiding center” theory representing motion as functions of
the three adiabatic invariants, µ,K , and L⇤. The first two in-
variants are relatively easy to calculate even in sophisticated
modern field models because they involve only the local field
and a one-dimensional integral along a single field line. The
third invariant L⇤ is much more difficult and computation-
ally expensive to calculate because it is both two-dimensional
and global (McCollough et al., 2008). Typical integration re-
quires on the order of 105 calls to the magnetic field model
for obtaining the magnetic field vector. The resulting lengthy
computation times often push researchers to compromise and
force them to use simpler, less accurate magnetic field mod-
els which may produce large inaccuracies and even wrong
conclusions (Huang et al., 2008).
Further development of radiation belt and space weather

models requires techniques that are computationally feasible
and still use the most accurate magnetic field models avail-
able. Direct numerical integration of the magnetic field can

Table 1. Input parameters for the neural network LANLstar.

Number Parameter Description

1 tY Integer number representing the year
2 tDOY Day of the year (int)
3 tUT Universal Time in units of hours (float)
4 Dst Disturbance storm time index (nT)
5 psw Solar wind dynamic pressure (nPa)
6 By Y component of the IMF field (nT)
7 Bz Z component of the IMF field (nT)
8–13 W1�6 See Tsyganenko and Sitnov (2005)
14 Lm McIllwain value; Roederer (1970)
15 Bmirr Magnetic field strength at mirror point (nT)
16 ↵loc Local pitch angle (deg)
17 rGSM Radial coordinate in GSM system (RE)
18 ✓GSM Latitudinal coordinate in GSM (deg)
19 'GSM Longitudinal coordinate in GSM (deg)

use standard numerical techniques together with the brute
force of many processors but other approaches that do not
sacrifice accuracy for speed are also possible as we describe
below.
In this follow-on paper to Koller et al. (2009), we describe

the recently improved and updated version of LANL⇤ V2.0.
The model is based on the same artificial neural network
(ANN) technique that was used for the first version but now
includes two major enhancements: (1) the model can now be
used for any type of orbit above 2000 km and is not limited
to geosynchronous orbit anymore. (2) The new model is now
based on the improved magnetic field model by Tsyganenko
and Sitnov (2005) (TS05) instead of the older model by Tsy-
ganenko et al. (2003).
In the following sections we describe the ANN setup and

the underlying TS05 model that was used for training the
neural network. In Sect. 4 we show validation studies and
conclude with Sect. 5.

2 The Tsyganenko and Sitnov 2005 Model – TS05

We used the recent magnetic field model TS05 by Tsyga-
nenko and Sitnov (2005). This magnetic field model is cur-
rently the most accurate model out of the Tsyganenko model
series (Huang et al., 2008). The Tsyganenko magnetic field
models are all semi-empirical models based on decades of
magnetic field measurements. The models calculate quasi-
static states of the Earth’s dynamic magnetic field based on
solar wind conditions and geomagnetic indices. The quasi-
static state is a statistical average for a given set of solar wind
conditions but is not a true equilibrium state. The TS05
model is based on space magnetometer data taken during
37 major geomagnetic storms in 1996–2000 and concurrent
observations of the solar wind and the interplanetary mag-
netic field. It accounts for external contributions from the
magnetopause, magnetotail current sheet, ring current, and

Geosci. Model Dev., 4, 669–675, 2011 www.geosci-model-dev.net/4/669/2011/
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Comparison with IRBEM: Input Setup670 J. Koller and S. Zaharia: LANL⇤ V2.0: global modeling and validation

in units of Earth radii. In a dipole field, particles of any
pitch angle would also have the same L⇤ for a given point
in space (see also, Roederer, 1970; Schulz and Lanzerotti,
1974; Schulz, 1991). However, a simple dipole magnetic
field is not a sufficiently accurate representation, especially
for geosynchronous orbit at RE = 6.6 and beyond. In realis-
tic fields, particles with different pitch angles have different
L⇤’s for the same point in space.
One important challenge for modeling of the radiation

belts (and other populations in space) is that the charged par-
ticles moving in space form complex current systems that in
turn distort the geomagnetic field. The interaction of the so-
lar wind, magnetospheric, and ionospheric current systems
form an interconnected dynamic system that produces strong
distortions of the Earth’s field such that it no longer approxi-
mates a dipole and, indeed, requires sophisticated numerical
field models that are themselves subject of intensive research
(e.g. Chen et al., 2006; Wolf, 1996).
Many models of the geomagnetic field have been devel-

oped but both the pace of development and the numerical
sophistication of the models has increased dramatically in
the last several decades. Numerically simple models such
as the static Olson-Pfitzer model (Olson, 1974) have given
way to dynamic, statistical models driven by solar wind and
geomagnetic inputs. The models developed by Tsyganenko
and colleagues are representative and are among the most
widely used (Tsyganenko et al., 2003; Tsyganenko and Sit-
nov, 2005). The most recent version of these models (Tsy-
ganenko and Sitnov, 2007) is also the most computation-
ally intensive model. At an even higher level of complexity
are global magnetohydrodynamic models or physics based
plasma/field model (e.g. Zaharia et al., 2006) but both of
these models are sufficiently computer-intensive that they are
typically only used for analysis in limited and targeted stud-
ies.
The motion of particles in complex, realistic geomag-

netic field configurations can be closely approximated using
“guiding center” theory representing motion as functions of
the three adiabatic invariants, µ,K , and L⇤. The first two in-
variants are relatively easy to calculate even in sophisticated
modern field models because they involve only the local field
and a one-dimensional integral along a single field line. The
third invariant L⇤ is much more difficult and computation-
ally expensive to calculate because it is both two-dimensional
and global (McCollough et al., 2008). Typical integration re-
quires on the order of 105 calls to the magnetic field model
for obtaining the magnetic field vector. The resulting lengthy
computation times often push researchers to compromise and
force them to use simpler, less accurate magnetic field mod-
els which may produce large inaccuracies and even wrong
conclusions (Huang et al., 2008).
Further development of radiation belt and space weather

models requires techniques that are computationally feasible
and still use the most accurate magnetic field models avail-
able. Direct numerical integration of the magnetic field can

Table 1. Input parameters for the neural network LANLstar.

Number Parameter Description

1 tY Integer number representing the year
2 tDOY Day of the year (int)
3 tUT Universal Time in units of hours (float)
4 Dst Disturbance storm time index (nT)
5 psw Solar wind dynamic pressure (nPa)
6 By Y component of the IMF field (nT)
7 Bz Z component of the IMF field (nT)
8–13 W1�6 See Tsyganenko and Sitnov (2005)
14 Lm McIllwain value; Roederer (1970)
15 Bmirr Magnetic field strength at mirror point (nT)
16 ↵loc Local pitch angle (deg)
17 rGSM Radial coordinate in GSM system (RE)
18 ✓GSM Latitudinal coordinate in GSM (deg)
19 'GSM Longitudinal coordinate in GSM (deg)

use standard numerical techniques together with the brute
force of many processors but other approaches that do not
sacrifice accuracy for speed are also possible as we describe
below.
In this follow-on paper to Koller et al. (2009), we describe

the recently improved and updated version of LANL⇤ V2.0.
The model is based on the same artificial neural network
(ANN) technique that was used for the first version but now
includes two major enhancements: (1) the model can now be
used for any type of orbit above 2000 km and is not limited
to geosynchronous orbit anymore. (2) The new model is now
based on the improved magnetic field model by Tsyganenko
and Sitnov (2005) (TS05) instead of the older model by Tsy-
ganenko et al. (2003).
In the following sections we describe the ANN setup and

the underlying TS05 model that was used for training the
neural network. In Sect. 4 we show validation studies and
conclude with Sect. 5.

2 The Tsyganenko and Sitnov 2005 Model – TS05

We used the recent magnetic field model TS05 by Tsyga-
nenko and Sitnov (2005). This magnetic field model is cur-
rently the most accurate model out of the Tsyganenko model
series (Huang et al., 2008). The Tsyganenko magnetic field
models are all semi-empirical models based on decades of
magnetic field measurements. The models calculate quasi-
static states of the Earth’s dynamic magnetic field based on
solar wind conditions and geomagnetic indices. The quasi-
static state is a statistical average for a given set of solar wind
conditions but is not a true equilibrium state. The TS05
model is based on space magnetometer data taken during
37 major geomagnetic storms in 1996–2000 and concurrent
observations of the solar wind and the interplanetary mag-
netic field. It accounts for external contributions from the
magnetopause, magnetotail current sheet, ring current, and

Geosci. Model Dev., 4, 669–675, 2011 www.geosci-model-dev.net/4/669/2011/

= [90 60 30 10]˚

= 0˚
= 180˚

= [9 8 7 6 5 4 3]

= From IRBEM and UBK
= From IRBEM and UBK

Table from Koller and Zaharia [2010]

= 1996
= 6

= 1.24 (01h 14m 34s)
= 7.78
= 4.10
= 3.72
= -.13
= [.12, .25, .09, .05, .23, 1.05]

20 Vsw Solar wind velocity (km/s) = 400.10
21 Φ Electric potential (kV/RE) = constant (i.e. W' = μmBm)

Tile≈-30˚



Dipole vs. IGRF
Φ(L=1) = 1.90e5
Φ(L=8) = 2.37e4

L* = 7.9991

Φ(L=1) = 1.95e5
Φ(L=8) = 2.35e4

L* = 8.2972
Ldip=8 Footprints (20.7˚)
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L* (U=0): Comparison with IRBEM

L*dip =∮surfAdip⋅dl /∮orbAdip⋅dl

: IGRF Only
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Speed & L* Map

(x, y) UBK IRBEM (DIP only) LANL*

181x181 ~ 2 min > 24+ min < .5 sec
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q = e
μm = 1 keV/nT
K = 0.1 √nT RE

Φ = const.

Φ = – A/r – B r sin(φ)
, where A=92 kV/RE, 
B=10 kV.

MATLAB Fortran Fortran



Summary

1. Trajectory calculation in energy space is preferable because
– No error accumulation due to numerical integration (only errors are 
from numerical interpolation),
– Strict conservation of energy and 2nd invariant (accurate contour and 
perfectly closed if closed),
– Fast computation: contour calculation is rapid (ex. contour plot) and 
independent of initial value of a particle, and
– Based on first principles only.

2. Preparation step is required to compute Bm(K) and the time depends on 
the field model (≈10 minutes for TS05).

3. The difference (dL*) is generally less than 0.1 and this method 
outperforms, at least in a dipole-like magnetic field, the previous method 
based on Lagrangian approach.
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