Quantitative Assessment of Magnetic Field Models

- 1. Global MHD code and Tsyganenko Models
- 2. Magnetospheric configuration and ULF wave fields
- 3. Applications

Chia-Lin Huang¹, Harlan Spence¹, John Lyon², Howard Singer³, and Nikolai Tsyganenko⁴

¹University of New Hampshire, ²Dartmouth College, ³NOAA, and ⁴University of Saint-Petersburg

Magnetic Fields From Global MHD Code

- Lyon-Fedder-Mobarry MHD code
 - B-field predictions at GEO: 9 storms and a 2month non-storm interval
 - Field lines are understretched, especially during storm-time, on the nightside
 - Predict reasonable non-storm time field
- For better result: high resolution & couple with RCM

HAMPSHIRE

NIVERSITY

Residual field $\Delta B = B_{MHD} - B_{GOES}$

Magnetic Fields From Tsyganenko Models

Tsyganenko models

Global, parameterized, quasi-static states of Earth's magnetosphere

Inputs:

- Pdyn, Dst, IMF By and Bz
- Parameters represent the SW time-integrating effect
- Field sources:
 - $B_{CF} + B_{SRC} + B_{TC} + B_{FAC} + B_{INT}$ and B_{PRC}
- Different datasets and calculation methods

AMPSHIRE

Statistical Analysis of Tsyganenko Models I

- Model/Data comparisons at geosynchronous orbit
 - 52 major storms (Dst < -100 nT) from 1996 to 2004 (1.5 x 10^5 5-min data points)

NSF GEM 2012 Summer Workshop - Chia-Lin Huang

Statistical Analysis of Tsyganenko Models II

NSF GEM 2012 Summer Workshop - Chia-Lin Huang

Consequences of Field Model Errors

- Inaccurate B-field model could alter the results of related studies
- Discrepancies between T models using same inputs (Pd = 3 nPa, Bz = +5 nT)
 - 15% error in L* calculation between T96 and TS05

JIVERSITY

AMPSHIRE

Using TS05 Model to Find MPS Signature

NSF GEM 2012 Summer Workshop - Chia-Lin Huang

HAMPSHIRE

GOES ULF wave power: B_b (Vx, Bz, Kp)

NSF GEM 2012 Summer Workshop - Chia-Lin Huang

ULF Wave Powers of GOES, LFM & TS05

- Feb-Apr 1996: typical solar wind condition
- LFM wave prediction is reasonable
- **TS05** underestimates wave power

Summary

Model	Storm time B	Non-storm time B	ULF wave field
Tsyganenko Model	\odot	\odot	Х
LFM MHD code	Х	\odot	\odot

- More application: use LFM's wave fields during non-storm time to study radial diffusion of radiation belt electrons
- Future work: Tsyganenko and Sitnov 2007 model

JIVERSITY

HAMPSHIRE

