Difference between revisions of "FG: Self-Consistent Inner Magnetospheric Modeling"

From gem
Jump to navigation Jump to search
 
(71 intermediate revisions by 3 users not shown)
Line 1: Line 1:
More information coming soon!
+
==Co-chairs==
 +
Cristian Ferradas (cristian.ferradasalva at nasa.gov), NASA Goddard
 +
 
 +
Qianli Ma (qma at bu.edu), Boston University
 +
 
 +
Chao Yue (yuechao at pku.edu.cn), Peking University
 +
 
 +
Sam Bingham (sam.bingham at jhuapl.edu), JHU/APL
 +
 
 +
Jacob Bortnik (jbortnik at atmos.ucla.edu), UCLA
 +
 
 +
==Research Area==
 +
Inner Magnetosphere, M-I coupling
 +
 
 +
==Overview==
 +
The terrestrial ring current is comprised primarily of protons, oxygen, and electrons from a few keV to several hundred keV and plays an important role in regulating the energy density and field configuration of the magnetosphere. The storm time ring current is formed by particles, originally from the solar wind and the ionosphere, that are injected into the inner magnetosphere due to changes in the electric and magnetic fields and the associated enhanced magnetospheric convection. The instability of the particles in the ring current provides the free energy of various waves, (e.g., EMIC, magnetosonic, and chorus waves) which play important roles in the dynamic evolution of the inner magnetosphere through wave-particle interactions. For example, the temperature anisotropy of tens of keV electrons generates whistler-mode chorus waves, which can drive pitch angle scattering and precipitation. The subsequent precipitation to the ionosphere modifies the ionospheric conductance, which in turn has feedback effects in the inner magnetosphere through changes to the electric potential pattern. Despite recent advances in ring current modeling, current models are not able to fully capture the dynamics of the ring current and the broader inner magnetosphere during disturbed times in a self-consistent manner. Understanding the coupling processes between the ring current and other plasma populations in the inner magnetosphere is crucial to self-consistent modeling. Our focus group aims to improve the physical understanding and modeling of the ring current interactions with and feedback from other populations (e.g., plasmasphere, radiation belts, and ionosphere), through theoretical studies, numerical modeling, and observations from satellite and ground-based missions.
 +
 
 +
==Topic Description==
 +
This focus group aims to improve the understanding of the development and decay of the storm-time ring current and its broader impact on the inner magnetosphere and magnetosphere-ionosphere (MI) system in order to further the capabilities of self-consistent modeling. To achieve the goal of our focus group, we will engage the GEM community to put-forth and answer science questions related to gaps in our current ability to:
 +
 
 +
; (1) represent the electric and magnetic fields self-consistently
 +
: We plan to assess how well are current inner magnetosphere models accounting for the observed fields, particularly, how well are the effects of the plasma on the fields accounted for. For example, it is known that precipitating electrons modify the ionospheric conductivity, which is crucial in self-consistent calculations of the fields.
 +
 
 +
; (2) quantify the relative roles of different loss mechanisms to the ring current
 +
: Current models are unable to adequately predict the rapid decay of the ring current during the early recovery phase of storms. This indicates that there is a gap in our current understanding of losses. The main loss processes include magnetopause shadowing, charge-exchange, and particle precipitation to the atmosphere. While the rapidly changing fields determine the depth of penetration of the ring current and how it is impacted by magnetopause shadowing, the ion composition and neutral densities impact charge-exchange losses. The relative impact of each loss process has not been fully quantified.
 +
 
 +
; (3) derive wave growth rates self-consistently
 +
: A key element in the interaction between the inner magnetosphere plasma populations relates to wave-particle diffusion processes in the magnetosphere. Current models usually account for wave-particle interactions using empirical models of the wave parameters. As such, they cannot sufficiently predict the important plasma waves driven by and interacting with the thermal, suprathermal, and ring current populations. A more self-consistent approach should be employed, in which the wave growth rates are calculated from the anisotropic particle pitch angle distributions, and in turn the generated waves drive the diffusion coefficients of the particles to cause pitch angle diffusion or acceleration.
 +
 
 +
; (4) understand wave-particle interactions involving thermal, suprathermal, and ring current populations
 +
: There is limited understanding about the relation between the plasma waves generated by ring current particles and the other particle populations. For example, observational evidence shows the correlation between EMIC waves (generated by protons in the ring current) and suprathermal helium and oxygen ions, but the efficiency of such heavy ion heating at several hundred eV energies is not yet quantified through resonant interaction modeling.
 +
 
 +
;(5) evaluate the non-linear effects of waves on particles
 +
: A remaining challenge regards the inclusion of nonlinear particle scattering and acceleration effects due to large wave amplitudes in addition to quasilinear theory. Satellite observations indicate that EMIC waves frequently have large amplitudes (> 1 nT). Quasilinear theory, which is commonly used to study particle scattering effects, has an assumption that wave amplitudes are small. Therefore, the validity of quasilinear modeling results needs to be confirmed and non-linear effects need to be taken into account to model wave-particle interactions.
 +
 
 +
;(6) assess the relative importance of different mechanisms leading to the development and decay of the electron ring current
 +
: Electrons in the ring current have been largely overlooked and there is a compelling need to better quantify them as they play an important role in the dynamics of the inner magnetosphere. Electrons represent the source population for whistler-mode chorus waves and the seed population for the radiation belts, and precipitating electrons modify the ionospheric conductivity, which is crucial in self-consistent calculations of the fields. Currently, models do not capture their ring current dynamics well and fail to predict electron fluxes accurately. We need to assess how the model deficiencies are related to the assumed fields, sources, and losses.
 +
 
 +
[https://drive.google.com/open?id=1wnDIVnj_quIcpcHaXHuKa-kubJ7RLhOv Full focus group proposal]
 +
 
 +
 
 +
=2020 Activities=
 +
==2020 VGEM Summer Workshop==
 +
===Session 1: Ring Current Dynamics===
 +
In this session we will assess the transport, energization, loss, and composition of the ring current ions and electrons, and the associated variations in electric and magnetic fields. We welcome research talks related to the ring current dynamics through numerical modeling and satellite observations.
 +
 
 +
<B>Date:</B> Wednesday, July 22nd, 1:00 pm - 2:30 pm EDT
 +
 
 +
1. Introduction to FG from chairs
 +
 
 +
2. Vania Jordanova (invited)
 +
 
 +
3. Matina Gkioulidou (invited)
 +
 
 +
4. Discussion with panel of speakers: The aim is to provide input on the research directions and the kind of activities that the FG should carry out to improve our capabilities to model the ring current dynamics self consistently.
 +
 
 +
5. Shanshan Bao: Ring current modeling as part of a coupled magnetosphere-ionosphere-thermosphere system
 +
 
 +
6. Yiqun Yu: The role of field line curvature scattering in ring current dynamics
 +
 
 +
7. Humberto Godinez: Ring Current Estimation using RAM-SCB and Van Allen Probes Data with Ensemble Kalman Filter Data Assimilation
 +
 
 +
8. Sapna Shekhar: TWINS observations of ring current ion nose spectra
 +
 
 +
===Session 2: Wave-Particle Interactions===
 +
In this session we will asses wave-particle interactions in the ring current, which drive the excitation of plasma waves, and the scattering or heating of thermal, suprathermal and energetic ions and electrons. We solicit both modeling and observational efforts.
 +
 
 +
<B>Date:</B> Wednesday, July 22nd, 3:00 pm - 4:30 pm EDT
 +
 
 +
1. Richard Denton (invited)
 +
 
 +
2. Lunjin Chen (invited)
 +
 
 +
3. Discussion with panel of speakers: The aim is to provide input on the research directions and the kind of activities that the FG should carry out to develop a self consistent approach to modeling wave-particle interactions.
 +
 
 +
4. Longzhi Gan: Unraveling the formation mechanism for butterfly distributions of electron bursts: Test particle and quasilinear simulations
 +
 
 +
5. Chao Yue: The modulation of plasma and waves by background electron density irregularities in the inner magnetosphere
 +
 
 +
6. Xiangning Chu: Acceleration of cold ions and electrons at a sharp plasmapause boundary
 +
 
 +
7. Jinxing Li: Parallel acceleration of suprathermal electrons caused by whistler‐mode hiss waves
 +
 
 +
8. Sapna Shekhar: Observational quantification of atmospheric relativistic electron loss from the radiation belts
 +
 
 +
9. Shreedevi Porunakatu Radhakrishna: On the ion precipitation from the inner magnetosphere by H-band and He-band EMIC waves
 +
 
 +
=2021 Activities=
 +
==2020 Mini-GEM==
 +
<B>Date:</B> Thursday, January 21st, 10:00 am - 12:00 pm EDT
 +
 
 +
<B>Zoom Meeting Information:</B>
 +
 
 +
      -  Time: Jan 21, 2021 10:00 AM Eastern Time (US and Canada)
 +
      -  https://bostonu.zoom.us/j/96292252828?pwd=TUVPZHFOYkxzZGJ3bzdpUDBCTlpHZz09
 +
      -  Meeting ID: 962 9225 2828
 +
      -  Passcode: 253427
 +
 
 +
<B>Schedule:</B>
 +
 
 +
<B>I - Contributed Presentations (10 min per talk)</B>
 +
 
 +
~10:00 am - 11:40 am
 +
 
 +
1. Yiqun Yu: The impact of lower-energy (<30 keV) electrons on the spacecraft surface charging environment
 +
 
 +
2. Jinxing Li: Self-consistent particle-in-cell simulation of two-band chorus waves in the radiation belts
 +
 
 +
3. Zefan Yin: Inner magnetospheric magnetic dips and energetic protons trapped therein: Multi-spacecraft observations and simulations
 +
 
 +
4. Xingzhi Lyu: Radial diffusion of energetic protons in the Earth's inner magnetosphere
 +
 
 +
5. Li Li: Observations of the drift resonance between charged particles and compressional-toroidal ULF waves
 +
 
 +
6. Hyomin Kim: The role of injected ring current ions in generating EMIC waves and scattering radiation belt particles
 +
 
 +
7. Longzhi Gan: Numerical study of the formation mechanism for bursts of electron butterfly distribution
 +
 
 +
8. Gonzalo Cucho-Padin: Understanding the role of exospheric density on the ring current recovery rate
 +
 
 +
9. Oleksiy Agapitov: The outer radiation belts electrons lifetime model: the update from the cold plasma effects
 +
 
 +
10. Chao Yue: Sustained oxygen spectral gaps and their dynamic evolution in the inner magnetosphere
 +
 
 +
<B>II - Open discussion about FG challenge ideas</B>
 +
 
 +
~11:40 am - 12:00 pm
 +
 
 +
==2021 VGEM Summer Workshop==
 +
===Session 1: Ring Current Dynamics===
 +
In this session we will assess the transport, energization, loss, and composition of the ring current ions and electrons, and the associated variations in electric and magnetic fields. We welcome research talks related to the ring current dynamics through numerical modeling and satellite observations.
 +
 
 +
<B>Date:</B> Tuesday, July 27th, 1:00 pm - 2:30 pm EDT
 +
 
 +
1. Mostafa El Alaoui: Particle Injection into the Inner Magnetosphere: An MHD with Embedded PIC Simulation
 +
 
 +
2. Jason Derr: A New Way to Include Inertia in the Rice Convection Model
 +
 
 +
3. Chao Yue: MLT-Dependence of Sustained Spectral Gaps of Proton and Oxygen in the Inner Magnetosphere
 +
 
 +
4. Xingzhi Lyu: Comparative Dropout Studies of Radiation Belt Electrons and Ring Current Protons
 +
 
 +
5. Matthew Cooper: Results of a Polynomial Model Recreation of Inner Magnetospheric Flux Measurements Taken by the Van Allen Probes RBSPICE Mission
 +
 
 +
6. Artem Smirnov: Storm-Time Evolution and Empirical Modeling of Equatorial Electron Pitch Angle Distributions Based on Van Allen Probes Data
 +
 
 +
7. Challenge Events Discussion
 +
 
 +
===Session 2: Wave-Particle Interactions===
 +
In this session we will asses wave-particle interactions in the ring current, which drive the excitation of plasma waves, and the scattering or heating of thermal, suprathermal and energetic ions and electrons. We solicit both modeling and observational efforts.
 +
 
 +
<B>Date:</B> Tuesday, July 27th, 3:00 pm - 4:30 pm EDT
 +
 
 +
1. Xin An: Particle-in-Cell Simulations of Two-Band Chorus Excitation
 +
 
 +
2. Xiaojia Zhang: Superfast Precipitation of Energetic Electrons as Observed by ELFIN CubeSat
 +
 
 +
3. Haobo Fu: Frequency-Dependent Responses of Plasmaspheric Hiss to the Impact of an IP Shock
 +
 
 +
4. Qianli Ma: Simultaneous Occurrence of EMIC and Magnetosonic Waves: Wave Generation and Particle Scattering Effects
 +
 
 +
5. Suk-Bin Kang: Superthermal Electron Production and Ionospheric Conductivity due to Energetic Particle Precipitation from the Inner Magnetosphere
 +
 
 +
6. Xu Liu: A Parametric Study of Oxygen Ion Cyclotron Harmonic Waves by an Oxygen Ring Distribution
 +
 
 +
7. Challenge Events Discussion
 +
 
 +
==2021 Mini-GEM==
 +
<B>Date:</B> Sunday, December 12th, 5:30 pm - 7:00 pm CT
 +
 
 +
<B>Location:</B> In-person meeting will be at Hilton Garden Inn New Orleans Convention Center (1001 South Peters Street New Orleans, LA 70130)
 +
 
 +
<B>Zoom Meeting Information:</B>
 +
 
 +
Topic: Mini-GEM 2021: SCIMM Session
 +
Time: Dec 12, 2021 05:30 PM Central Time (US and Canada)
 +
 
 +
Join Zoom Meeting
 +
https://cua.zoom.us/j/89963576532?pwd=ZnB0TWRDOENBT2dDbTlNbC9TdThFZz09
 +
 
 +
Meeting ID: 899 6357 6532
 +
Passcode: 527005
 +
One tap mobile
 +
+13017158592,,89963576532#,,,,*527005# US (Washington DC)
 +
+13126266799,,89963576532#,,,,*527005# US (Chicago)
 +
 
 +
Dial by your location
 +
        +1 301 715 8592 US (Washington DC)
 +
        +1 312 626 6799 US (Chicago)
 +
        +1 929 436 2866 US (New York)
 +
        +1 253 215 8782 US (Tacoma)
 +
        +1 346 248 7799 US (Houston)
 +
        +1 669 900 6833 US (San Jose)
 +
Meeting ID: 899 6357 6532
 +
Passcode: 527005
 +
Find your local number: https://cua.zoom.us/u/kibRERJwM
 +
 
 +
==Challenge Events==
 +
We identified three geomagnetic storm events for studying the ring current development and decay with observational data and simulations.
 +
 
 +
27–30 May 2017 Storm (min Dst ~ -125 nT)
 +
 
 +
6-12 September 2017 Storm (min Dst ~ -122 nT)
 +
 
 +
25-30 August 2018 Storm (min Dst ~ -174 nT)
 +
 
 +
[https://drive.google.com/file/d/1PPFMzBZMfQ2a3fxZD3dpQw4c-IAR74G3/view?usp=sharing Challenge Events Description]
 +
 
 +
Please, let us know if you are interested in participating in any of these challenge events.
 +
 
 +
=2022 Activities=
 +
==2022 GEM Summer Workshop==
 +
===Session 1: Ring Current Dynamics===
 +
In this session we will assess the transport, energization, loss, and composition of the ring current ions and electrons, and the associated variations in electric and magnetic fields. We welcome research talks related to the ring current dynamics through numerical modeling and satellite observations.
 +
 
 +
<B>Date:</B> Monday, June 20th, 10:30 am - 12:00 pm HST
 +
 
 +
1. Kateryna Yakymenko: RAM-SCB simulations of the inner magnetosphere during the CME-induced geomagnetic storm of 6-9 September 2017 and high-speed stream-driven geomagnetic storm of 19-26 April 2017
 +
 
 +
2. Anthony Sciola: Evolution of the ring current energy spectra: Modeling and validation during the March 17, 2013 storm
 +
 
 +
3. Haobo Fu: Substorm influences on plasma properties distributions in the inner magnetosphere
 +
 
 +
4. Yan Zhuang: The characteristics of energetic ion dispersionless injection inside the geosynchronous orbit
 +
 
 +
5. Scott Thaller: Preliminary look at the Van Allen Probes Kp dependent statistical density, electric field, and ExB flow
 +
 
 +
6. Cristian Ferradas: Van Allen Probes particle pressure survey: Preliminary results of the Kp dependence
 +
 
 +
 
 +
===Session 2: Wave-Particle Interactions===
 +
In this session we will asses wave-particle interactions in the ring current, which drive the excitation of plasma waves, and the scattering or heating of thermal, suprathermal and energetic ions and electrons. We solicit both modeling and observational efforts.
 +
 
 +
<B>Date:</B> Monday, June 20th, 1:30 pm - 3:00 pm HST
 +
 
 +
1. Michael Hartinger: Overview of the GEM ULF wave FG challenge event: 27-28 May 2017 geomagnetic storm
 +
 
 +
2. Kyungguk Min: PIC simulations of banded chorus generation due to parallel electron plateau
 +
 
 +
3. Yuxuan Li: Simultaneous cross-energy ion response and wave generation after the impact of an interplanetary shock
 +
 
 +
4. Xiaochen Shen: Energetic Proton Distribution in the Jovian Magnetosphere from Juno Observations
 +
 
 +
5. Murong Qin: Global Magnetic Field Oscillations and Their Effects on Modulating Energetic Electron Precipitation
 +
 
 +
6. Yun Yan: Prompt Appearance of Large-Amplitude EMIC Waves Induced by Solar Wind Dynamic Pressure and the Subsequent Relativistic Electron Precipitation
 +
 
 +
7. Anthony Saikin: Low Frequency Plasmaspheric Hiss Wave Activity Parameterized by Plasmapause Location: Models and Simulations
 +
 
 +
 
 +
===SCIMM-MPEC Joint Session===
 +
 
 +
<B>Date:</B> Wednesday, June 22nd, 1:30 pm - 3:00 pm HST
 +
 
 +
1. Raluca Ilie: Ionospheric feedback to the magnetosphere
 +
 
 +
2. Michael Hartinger: ULF wave modulation of Total Electron Content
 +
 
 +
3. Mei-Ching Fok: Particle Precipitation from the CIMI Model
 +
 
 +
4. Yongliang Zhang: Ring Current Aurora
 +
 
 +
5. Qianli Ma: Electron Precipitation and Ionospheric Density Enhancements due to Hiss
 +
 
 +
6. Dillon Gillespie: Global statistics of diffuse electron aurora and ionospheric conductance directly derived from whistler mode chorus waves
 +
 
 +
7. Dong Lin: Origin of dawnside SAPS during major geomagnetic storms
 +
 
 +
8. Suk-Bin Kang: Ionospheric conductance due to ring current proton precipitation
 +
 
 +
 
 +
===RB-CP-SCIMM-MPEC Joint Session===
 +
 
 +
<B>Date:</B> Wednesday, June 22nd, 3:30 pm - 5:00 pm HST
 +
 
 +
<B>Structure of the session:</B>
 +
 
 +
3:30 pm - 3:55 pm. Scene-setting talk by Jacob Bortnik (20 minutes presentation + 5 minutes Q&A);
 +
 
 +
3:55 pm - 5:00 pm. Presentations. Format: 6 minutes presentation + 4 minutes Q&A each, 4 slides maximum.
 +
 
 +
<B>List of speakers:</B>
 +
 
 +
1. Yuri Shprits: The controlling effect of cold plasma density on acceleration and loss of ultra-relativistic electrons
 +
 
 +
2. Hyunju Connor: Storm-time variability of exosphere neutral density
 +
 
 +
3. David Hartley: Using Van Allen Probes and Arase Observations to Build A New Plasma Density Model for the Inner Zone
 +
 
 +
4. Greg Cunningham: Effect of a New Plasma Density Model on Diffusion Coefficients for Energetic Electrons in the Inner Zone
 +
 
 +
5. Scott Thaller: Empirical plasmapause models deduced from Van Allen Probes measurements
 +
 
 +
6. Solene Lejosne: Drift loss cone filling and energetic electron dynamics in the inner radiation belt and below during the September 2017 Storm
 +
 
 +
7. Richard Denton: Models for magnetospheric mass density
 +
 
 +
Details: Please contact Gian Luca Delzanno (delzanno@lanl.gov) if you want to contribute to the session
 +
 
 +
==2022 Mini-GEM==
 +
<B>Date:</B> Sunday, December 11th, 12:00 pm - 1:30 pm CST
 +
 
 +
<B>Location:</B> In-person meeting will be at Hilton Chicago Hotel (720 South Michigan Avenue, Chicago, IL 60605) in the Waldorf room
 +
 
 +
<B>Zoom Meeting Information:</B>
 +
 
 +
Topic: Mini-GEM 2022: SCIMM Session
 +
Time: Dec 11, 2022 12:00 - 1:30 PM Central Time (US and Canada)
 +
 
 +
Join Zoom Meeting
 +
https://ucla.zoom.us/j/6211958105
 +
 
 +
Meeting ID: 621 195 8105
 +
 
 +
=2023 Activities=
 +
==2023 GEM Summer Workshop==
 +
===SCIMM-CP Joint Session===
 +
 
 +
<B>Date:</B> Tuesday, June 13th, 3:30 pm - 5:00 pm PDT
 +
 
 +
1. Mirek Hanzelka: Full-wave modeling of ducted and reflected EMIC waves in the plasmatrough and plasmaspheric plumes
 +
 
 +
2. Michael Hartinger: Early results from the HARP citizen science project: Implications for ULF wave and cold plasma research
 +
 
 +
3. Matthew Cooper: An Update on the MEIM empirical inner mag model
 +
 
 +
4. Justin Holmes: Exploring the impacts of cold electrons on magnetospheric wave-particle interactions
 +
 
 +
5. Oleksiy Agapitov: New Approach to Wave Models: How Cold Plasma Determines Efficiency of Wave-Particle Interactions in the Radiation Belts
 +
 
 +
6. Greg Cunningham: A significant correction to the 50-year-old theory for calculation of quasilinear diffusion coefficients used in heliophysics
 +
 
 +
===SCIMM Session===
 +
 
 +
<B>Date:</B> Thursday, June 15th, 1:30 pm - 3:00 pm PDT
 +
 
 +
1. Xingzhi Lyu: Modeling the simultaneous dropout of energetic electrons and protons by magnetopause shadowing
 +
 
 +
2. Dibyendu Sur: Assessment of the performances of magnetospheric and ionospheric models regarding predictions of auroral parameters during geomagnetically disturbed conditions
 +
 
 +
3. Bernhard Haas: A missing dusk‑side loss process in the terrestrial electron ring current
 +
 
 +
4. Xiaojia Zhang: A new generation of radiation belt models with nonlinear resonant interactions included
 +
 
 +
5. Oliver Allanson: The validity of quasilinear and theory depends on the pitch-angle
 +
 
 +
6. Adnane Osmane: What is nonlinear radial transport by ULF waves, and does it need to be taken into account in radiation belt models?
 +
 
 +
7. Yun Yan: Amplitude-dependent properties and excitation mechanisms of EMIC waves in the Earth’s inner magnetosphere
 +
 
 +
===MPEC-SCIMM-ML Joint Session===
 +
 
 +
<B>Date:</B> Thursday, June 15th, 3:30 pm - 5:00 pm PDT
 +
 
 +
1. Alfredo Cruz: Emulating the RAM-SCB and CIMI ring current models
 +
 
 +
2. Sheng Huang: Machine learning of hiss waves in the plumes
 +
 
 +
3. Xiaochen Shen: Large-amplitude whistler waves in plasmasphere and plumes
 +
 
 +
4. Qianli Ma: Performance of empirical models of total electron density and whistler-mode waves
 +
 
 +
5. Cristian Ferradas: Modeling the effects of field line curvature scattering on the ring current and the atmosphere
 +
 
 +
==2023 Mini-GEM==
 +
<B>Date:</B> Sunday, December 10th, 3:30 pm - 5:00 pm PST
 +
 
 +
<B>Location:</B> In-person meeting will be at Holiday Inn San Francisco – Golden Gateway (1500 Van Ness Avenue, San Francisco, CA 94109) in the Gold Rush B room
 +
 
 +
<B>Zoom Meeting Information:</B>
 +
 
 +
Topic: Mini-GEM SCIMM Session in 2023
 +
Time: Dec 10, 2023 03:20 PM Pacific Time (US and Canada)
 +
 
 +
Join Zoom Meeting
 +
https://bostonu.zoom.us/j/92006552342?pwd=akFTd1NwWmlvSk54dGpCRS9uVlQ0dz09
 +
 
 +
Meeting ID: 920 0655 2342
 +
 
 +
Passcode: 435913
 +
 
 +
=2024 Activities=
 +
==2024 GEM Summer Workshop==
 +
===SCIMM Session===
 +
 
 +
<B>Date:</B> Monday, June 24th, 10:30 am - 12:00 pm MDT
 +
 
 +
1. Yiwen Zhu: Ionospheric O+ outflows impact on storm time ring current region
 +
 
 +
2. Sina Sadeghzadeh: Recent (Rice Convection Model) RCM simulation
 +
 
 +
3. Xingzhi Lyu: RCM modeling with EMIC waves
 +
 
 +
4. Paul Bernhardt: Generation of intense whistlers with HAARP for RBR
 +
 
 +
5. Donglai Ma: Excitation of whistler waves by electron transverse anisotropy in a laboratory plasma
 +
 
 +
6. Cristian Ferradas: The role of the terrestrial exosphere in the storm-time ring current decay
 +
 
 +
===SCIMM Poster Session===
 +
 
 +
<B>Date:</B> Monday, June 24th, 1:30 pm - 3:00 pm MDT
 +
 
 +
===SCIMM-CP Joint Session===
 +
 
 +
<B>Date:</B> Thursday, June 27th, 1:30 pm - 3:00 pm MDT
 +
 
 +
1. Hyunju Connor: Exospheric density variabilities in the inner magnetosphere during solar minimum and maximum: MATE simulation results
 +
 
 +
2. Justin Lee: Statistical analysis and modeling of magnetospheric ion composition during EMIC wave activity
 +
 
 +
3. Shujie Gu: The role of cold oxygen ions in the EMIC wave growth
 +
 
 +
4. Ning Kang: The principal role of chorus ducting for night-side relativistic electron precipitation
 +
 
 +
===MLGEM-RB-SCIMM-CP Joint Session===
 +
 
 +
<B>Date:</B> Thursday, June 27th, 3:30 pm - 5:00 pm MDT

Latest revision as of 09:54, 24 June 2024

Co-chairs

Cristian Ferradas (cristian.ferradasalva at nasa.gov), NASA Goddard

Qianli Ma (qma at bu.edu), Boston University

Chao Yue (yuechao at pku.edu.cn), Peking University

Sam Bingham (sam.bingham at jhuapl.edu), JHU/APL

Jacob Bortnik (jbortnik at atmos.ucla.edu), UCLA

Research Area

Inner Magnetosphere, M-I coupling

Overview

The terrestrial ring current is comprised primarily of protons, oxygen, and electrons from a few keV to several hundred keV and plays an important role in regulating the energy density and field configuration of the magnetosphere. The storm time ring current is formed by particles, originally from the solar wind and the ionosphere, that are injected into the inner magnetosphere due to changes in the electric and magnetic fields and the associated enhanced magnetospheric convection. The instability of the particles in the ring current provides the free energy of various waves, (e.g., EMIC, magnetosonic, and chorus waves) which play important roles in the dynamic evolution of the inner magnetosphere through wave-particle interactions. For example, the temperature anisotropy of tens of keV electrons generates whistler-mode chorus waves, which can drive pitch angle scattering and precipitation. The subsequent precipitation to the ionosphere modifies the ionospheric conductance, which in turn has feedback effects in the inner magnetosphere through changes to the electric potential pattern. Despite recent advances in ring current modeling, current models are not able to fully capture the dynamics of the ring current and the broader inner magnetosphere during disturbed times in a self-consistent manner. Understanding the coupling processes between the ring current and other plasma populations in the inner magnetosphere is crucial to self-consistent modeling. Our focus group aims to improve the physical understanding and modeling of the ring current interactions with and feedback from other populations (e.g., plasmasphere, radiation belts, and ionosphere), through theoretical studies, numerical modeling, and observations from satellite and ground-based missions.

Topic Description

This focus group aims to improve the understanding of the development and decay of the storm-time ring current and its broader impact on the inner magnetosphere and magnetosphere-ionosphere (MI) system in order to further the capabilities of self-consistent modeling. To achieve the goal of our focus group, we will engage the GEM community to put-forth and answer science questions related to gaps in our current ability to:

(1) represent the electric and magnetic fields self-consistently
We plan to assess how well are current inner magnetosphere models accounting for the observed fields, particularly, how well are the effects of the plasma on the fields accounted for. For example, it is known that precipitating electrons modify the ionospheric conductivity, which is crucial in self-consistent calculations of the fields.
(2) quantify the relative roles of different loss mechanisms to the ring current
Current models are unable to adequately predict the rapid decay of the ring current during the early recovery phase of storms. This indicates that there is a gap in our current understanding of losses. The main loss processes include magnetopause shadowing, charge-exchange, and particle precipitation to the atmosphere. While the rapidly changing fields determine the depth of penetration of the ring current and how it is impacted by magnetopause shadowing, the ion composition and neutral densities impact charge-exchange losses. The relative impact of each loss process has not been fully quantified.
(3) derive wave growth rates self-consistently
A key element in the interaction between the inner magnetosphere plasma populations relates to wave-particle diffusion processes in the magnetosphere. Current models usually account for wave-particle interactions using empirical models of the wave parameters. As such, they cannot sufficiently predict the important plasma waves driven by and interacting with the thermal, suprathermal, and ring current populations. A more self-consistent approach should be employed, in which the wave growth rates are calculated from the anisotropic particle pitch angle distributions, and in turn the generated waves drive the diffusion coefficients of the particles to cause pitch angle diffusion or acceleration.
(4) understand wave-particle interactions involving thermal, suprathermal, and ring current populations
There is limited understanding about the relation between the plasma waves generated by ring current particles and the other particle populations. For example, observational evidence shows the correlation between EMIC waves (generated by protons in the ring current) and suprathermal helium and oxygen ions, but the efficiency of such heavy ion heating at several hundred eV energies is not yet quantified through resonant interaction modeling.
(5) evaluate the non-linear effects of waves on particles
A remaining challenge regards the inclusion of nonlinear particle scattering and acceleration effects due to large wave amplitudes in addition to quasilinear theory. Satellite observations indicate that EMIC waves frequently have large amplitudes (> 1 nT). Quasilinear theory, which is commonly used to study particle scattering effects, has an assumption that wave amplitudes are small. Therefore, the validity of quasilinear modeling results needs to be confirmed and non-linear effects need to be taken into account to model wave-particle interactions.
(6) assess the relative importance of different mechanisms leading to the development and decay of the electron ring current
Electrons in the ring current have been largely overlooked and there is a compelling need to better quantify them as they play an important role in the dynamics of the inner magnetosphere. Electrons represent the source population for whistler-mode chorus waves and the seed population for the radiation belts, and precipitating electrons modify the ionospheric conductivity, which is crucial in self-consistent calculations of the fields. Currently, models do not capture their ring current dynamics well and fail to predict electron fluxes accurately. We need to assess how the model deficiencies are related to the assumed fields, sources, and losses.

Full focus group proposal


2020 Activities

2020 VGEM Summer Workshop

Session 1: Ring Current Dynamics

In this session we will assess the transport, energization, loss, and composition of the ring current ions and electrons, and the associated variations in electric and magnetic fields. We welcome research talks related to the ring current dynamics through numerical modeling and satellite observations.

Date: Wednesday, July 22nd, 1:00 pm - 2:30 pm EDT

1. Introduction to FG from chairs

2. Vania Jordanova (invited)

3. Matina Gkioulidou (invited)

4. Discussion with panel of speakers: The aim is to provide input on the research directions and the kind of activities that the FG should carry out to improve our capabilities to model the ring current dynamics self consistently.

5. Shanshan Bao: Ring current modeling as part of a coupled magnetosphere-ionosphere-thermosphere system

6. Yiqun Yu: The role of field line curvature scattering in ring current dynamics

7. Humberto Godinez: Ring Current Estimation using RAM-SCB and Van Allen Probes Data with Ensemble Kalman Filter Data Assimilation

8. Sapna Shekhar: TWINS observations of ring current ion nose spectra

Session 2: Wave-Particle Interactions

In this session we will asses wave-particle interactions in the ring current, which drive the excitation of plasma waves, and the scattering or heating of thermal, suprathermal and energetic ions and electrons. We solicit both modeling and observational efforts.

Date: Wednesday, July 22nd, 3:00 pm - 4:30 pm EDT

1. Richard Denton (invited)

2. Lunjin Chen (invited)

3. Discussion with panel of speakers: The aim is to provide input on the research directions and the kind of activities that the FG should carry out to develop a self consistent approach to modeling wave-particle interactions.

4. Longzhi Gan: Unraveling the formation mechanism for butterfly distributions of electron bursts: Test particle and quasilinear simulations

5. Chao Yue: The modulation of plasma and waves by background electron density irregularities in the inner magnetosphere

6. Xiangning Chu: Acceleration of cold ions and electrons at a sharp plasmapause boundary

7. Jinxing Li: Parallel acceleration of suprathermal electrons caused by whistler‐mode hiss waves

8. Sapna Shekhar: Observational quantification of atmospheric relativistic electron loss from the radiation belts

9. Shreedevi Porunakatu Radhakrishna: On the ion precipitation from the inner magnetosphere by H-band and He-band EMIC waves

2021 Activities

2020 Mini-GEM

Date: Thursday, January 21st, 10:00 am - 12:00 pm EDT

Zoom Meeting Information:

      -  Time: Jan 21, 2021 10:00 AM Eastern Time (US and Canada)
      -  https://bostonu.zoom.us/j/96292252828?pwd=TUVPZHFOYkxzZGJ3bzdpUDBCTlpHZz09
      -  Meeting ID: 962 9225 2828
      -  Passcode: 253427

Schedule:

I - Contributed Presentations (10 min per talk)

~10:00 am - 11:40 am

1. Yiqun Yu: The impact of lower-energy (<30 keV) electrons on the spacecraft surface charging environment

2. Jinxing Li: Self-consistent particle-in-cell simulation of two-band chorus waves in the radiation belts

3. Zefan Yin: Inner magnetospheric magnetic dips and energetic protons trapped therein: Multi-spacecraft observations and simulations

4. Xingzhi Lyu: Radial diffusion of energetic protons in the Earth's inner magnetosphere

5. Li Li: Observations of the drift resonance between charged particles and compressional-toroidal ULF waves

6. Hyomin Kim: The role of injected ring current ions in generating EMIC waves and scattering radiation belt particles

7. Longzhi Gan: Numerical study of the formation mechanism for bursts of electron butterfly distribution

8. Gonzalo Cucho-Padin: Understanding the role of exospheric density on the ring current recovery rate

9. Oleksiy Agapitov: The outer radiation belts electrons lifetime model: the update from the cold plasma effects

10. Chao Yue: Sustained oxygen spectral gaps and their dynamic evolution in the inner magnetosphere

II - Open discussion about FG challenge ideas

~11:40 am - 12:00 pm

2021 VGEM Summer Workshop

Session 1: Ring Current Dynamics

In this session we will assess the transport, energization, loss, and composition of the ring current ions and electrons, and the associated variations in electric and magnetic fields. We welcome research talks related to the ring current dynamics through numerical modeling and satellite observations.

Date: Tuesday, July 27th, 1:00 pm - 2:30 pm EDT

1. Mostafa El Alaoui: Particle Injection into the Inner Magnetosphere: An MHD with Embedded PIC Simulation

2. Jason Derr: A New Way to Include Inertia in the Rice Convection Model

3. Chao Yue: MLT-Dependence of Sustained Spectral Gaps of Proton and Oxygen in the Inner Magnetosphere

4. Xingzhi Lyu: Comparative Dropout Studies of Radiation Belt Electrons and Ring Current Protons

5. Matthew Cooper: Results of a Polynomial Model Recreation of Inner Magnetospheric Flux Measurements Taken by the Van Allen Probes RBSPICE Mission

6. Artem Smirnov: Storm-Time Evolution and Empirical Modeling of Equatorial Electron Pitch Angle Distributions Based on Van Allen Probes Data

7. Challenge Events Discussion

Session 2: Wave-Particle Interactions

In this session we will asses wave-particle interactions in the ring current, which drive the excitation of plasma waves, and the scattering or heating of thermal, suprathermal and energetic ions and electrons. We solicit both modeling and observational efforts.

Date: Tuesday, July 27th, 3:00 pm - 4:30 pm EDT

1. Xin An: Particle-in-Cell Simulations of Two-Band Chorus Excitation

2. Xiaojia Zhang: Superfast Precipitation of Energetic Electrons as Observed by ELFIN CubeSat

3. Haobo Fu: Frequency-Dependent Responses of Plasmaspheric Hiss to the Impact of an IP Shock

4. Qianli Ma: Simultaneous Occurrence of EMIC and Magnetosonic Waves: Wave Generation and Particle Scattering Effects

5. Suk-Bin Kang: Superthermal Electron Production and Ionospheric Conductivity due to Energetic Particle Precipitation from the Inner Magnetosphere

6. Xu Liu: A Parametric Study of Oxygen Ion Cyclotron Harmonic Waves by an Oxygen Ring Distribution

7. Challenge Events Discussion

2021 Mini-GEM

Date: Sunday, December 12th, 5:30 pm - 7:00 pm CT

Location: In-person meeting will be at Hilton Garden Inn New Orleans Convention Center (1001 South Peters Street New Orleans, LA 70130)

Zoom Meeting Information:

Topic: Mini-GEM 2021: SCIMM Session Time: Dec 12, 2021 05:30 PM Central Time (US and Canada)

Join Zoom Meeting https://cua.zoom.us/j/89963576532?pwd=ZnB0TWRDOENBT2dDbTlNbC9TdThFZz09

Meeting ID: 899 6357 6532 Passcode: 527005 One tap mobile +13017158592,,89963576532#,,,,*527005# US (Washington DC) +13126266799,,89963576532#,,,,*527005# US (Chicago)

Dial by your location

       +1 301 715 8592 US (Washington DC)
       +1 312 626 6799 US (Chicago)
       +1 929 436 2866 US (New York)
       +1 253 215 8782 US (Tacoma)
       +1 346 248 7799 US (Houston)
       +1 669 900 6833 US (San Jose)

Meeting ID: 899 6357 6532 Passcode: 527005 Find your local number: https://cua.zoom.us/u/kibRERJwM

Challenge Events

We identified three geomagnetic storm events for studying the ring current development and decay with observational data and simulations.

27–30 May 2017 Storm (min Dst ~ -125 nT)
6-12 September 2017 Storm (min Dst ~ -122 nT)
25-30 August 2018 Storm (min Dst ~ -174 nT)

Challenge Events Description

Please, let us know if you are interested in participating in any of these challenge events.

2022 Activities

2022 GEM Summer Workshop

Session 1: Ring Current Dynamics

In this session we will assess the transport, energization, loss, and composition of the ring current ions and electrons, and the associated variations in electric and magnetic fields. We welcome research talks related to the ring current dynamics through numerical modeling and satellite observations.

Date: Monday, June 20th, 10:30 am - 12:00 pm HST

1. Kateryna Yakymenko: RAM-SCB simulations of the inner magnetosphere during the CME-induced geomagnetic storm of 6-9 September 2017 and high-speed stream-driven geomagnetic storm of 19-26 April 2017

2. Anthony Sciola: Evolution of the ring current energy spectra: Modeling and validation during the March 17, 2013 storm

3. Haobo Fu: Substorm influences on plasma properties distributions in the inner magnetosphere

4. Yan Zhuang: The characteristics of energetic ion dispersionless injection inside the geosynchronous orbit

5. Scott Thaller: Preliminary look at the Van Allen Probes Kp dependent statistical density, electric field, and ExB flow

6. Cristian Ferradas: Van Allen Probes particle pressure survey: Preliminary results of the Kp dependence


Session 2: Wave-Particle Interactions

In this session we will asses wave-particle interactions in the ring current, which drive the excitation of plasma waves, and the scattering or heating of thermal, suprathermal and energetic ions and electrons. We solicit both modeling and observational efforts.

Date: Monday, June 20th, 1:30 pm - 3:00 pm HST

1. Michael Hartinger: Overview of the GEM ULF wave FG challenge event: 27-28 May 2017 geomagnetic storm

2. Kyungguk Min: PIC simulations of banded chorus generation due to parallel electron plateau

3. Yuxuan Li: Simultaneous cross-energy ion response and wave generation after the impact of an interplanetary shock

4. Xiaochen Shen: Energetic Proton Distribution in the Jovian Magnetosphere from Juno Observations

5. Murong Qin: Global Magnetic Field Oscillations and Their Effects on Modulating Energetic Electron Precipitation

6. Yun Yan: Prompt Appearance of Large-Amplitude EMIC Waves Induced by Solar Wind Dynamic Pressure and the Subsequent Relativistic Electron Precipitation

7. Anthony Saikin: Low Frequency Plasmaspheric Hiss Wave Activity Parameterized by Plasmapause Location: Models and Simulations


SCIMM-MPEC Joint Session

Date: Wednesday, June 22nd, 1:30 pm - 3:00 pm HST

1. Raluca Ilie: Ionospheric feedback to the magnetosphere

2. Michael Hartinger: ULF wave modulation of Total Electron Content

3. Mei-Ching Fok: Particle Precipitation from the CIMI Model

4. Yongliang Zhang: Ring Current Aurora

5. Qianli Ma: Electron Precipitation and Ionospheric Density Enhancements due to Hiss

6. Dillon Gillespie: Global statistics of diffuse electron aurora and ionospheric conductance directly derived from whistler mode chorus waves

7. Dong Lin: Origin of dawnside SAPS during major geomagnetic storms

8. Suk-Bin Kang: Ionospheric conductance due to ring current proton precipitation


RB-CP-SCIMM-MPEC Joint Session

Date: Wednesday, June 22nd, 3:30 pm - 5:00 pm HST

Structure of the session:

3:30 pm - 3:55 pm. Scene-setting talk by Jacob Bortnik (20 minutes presentation + 5 minutes Q&A);

3:55 pm - 5:00 pm. Presentations. Format: 6 minutes presentation + 4 minutes Q&A each, 4 slides maximum.

List of speakers:

1. Yuri Shprits: The controlling effect of cold plasma density on acceleration and loss of ultra-relativistic electrons

2. Hyunju Connor: Storm-time variability of exosphere neutral density

3. David Hartley: Using Van Allen Probes and Arase Observations to Build A New Plasma Density Model for the Inner Zone

4. Greg Cunningham: Effect of a New Plasma Density Model on Diffusion Coefficients for Energetic Electrons in the Inner Zone

5. Scott Thaller: Empirical plasmapause models deduced from Van Allen Probes measurements

6. Solene Lejosne: Drift loss cone filling and energetic electron dynamics in the inner radiation belt and below during the September 2017 Storm

7. Richard Denton: Models for magnetospheric mass density

Details: Please contact Gian Luca Delzanno (delzanno@lanl.gov) if you want to contribute to the session

2022 Mini-GEM

Date: Sunday, December 11th, 12:00 pm - 1:30 pm CST

Location: In-person meeting will be at Hilton Chicago Hotel (720 South Michigan Avenue, Chicago, IL 60605) in the Waldorf room

Zoom Meeting Information:

Topic: Mini-GEM 2022: SCIMM Session Time: Dec 11, 2022 12:00 - 1:30 PM Central Time (US and Canada)

Join Zoom Meeting https://ucla.zoom.us/j/6211958105

Meeting ID: 621 195 8105

2023 Activities

2023 GEM Summer Workshop

SCIMM-CP Joint Session

Date: Tuesday, June 13th, 3:30 pm - 5:00 pm PDT

1. Mirek Hanzelka: Full-wave modeling of ducted and reflected EMIC waves in the plasmatrough and plasmaspheric plumes

2. Michael Hartinger: Early results from the HARP citizen science project: Implications for ULF wave and cold plasma research

3. Matthew Cooper: An Update on the MEIM empirical inner mag model

4. Justin Holmes: Exploring the impacts of cold electrons on magnetospheric wave-particle interactions

5. Oleksiy Agapitov: New Approach to Wave Models: How Cold Plasma Determines Efficiency of Wave-Particle Interactions in the Radiation Belts

6. Greg Cunningham: A significant correction to the 50-year-old theory for calculation of quasilinear diffusion coefficients used in heliophysics

SCIMM Session

Date: Thursday, June 15th, 1:30 pm - 3:00 pm PDT

1. Xingzhi Lyu: Modeling the simultaneous dropout of energetic electrons and protons by magnetopause shadowing

2. Dibyendu Sur: Assessment of the performances of magnetospheric and ionospheric models regarding predictions of auroral parameters during geomagnetically disturbed conditions

3. Bernhard Haas: A missing dusk‑side loss process in the terrestrial electron ring current

4. Xiaojia Zhang: A new generation of radiation belt models with nonlinear resonant interactions included

5. Oliver Allanson: The validity of quasilinear and theory depends on the pitch-angle

6. Adnane Osmane: What is nonlinear radial transport by ULF waves, and does it need to be taken into account in radiation belt models?

7. Yun Yan: Amplitude-dependent properties and excitation mechanisms of EMIC waves in the Earth’s inner magnetosphere

MPEC-SCIMM-ML Joint Session

Date: Thursday, June 15th, 3:30 pm - 5:00 pm PDT

1. Alfredo Cruz: Emulating the RAM-SCB and CIMI ring current models

2. Sheng Huang: Machine learning of hiss waves in the plumes

3. Xiaochen Shen: Large-amplitude whistler waves in plasmasphere and plumes

4. Qianli Ma: Performance of empirical models of total electron density and whistler-mode waves

5. Cristian Ferradas: Modeling the effects of field line curvature scattering on the ring current and the atmosphere

2023 Mini-GEM

Date: Sunday, December 10th, 3:30 pm - 5:00 pm PST

Location: In-person meeting will be at Holiday Inn San Francisco – Golden Gateway (1500 Van Ness Avenue, San Francisco, CA 94109) in the Gold Rush B room

Zoom Meeting Information:

Topic: Mini-GEM SCIMM Session in 2023 Time: Dec 10, 2023 03:20 PM Pacific Time (US and Canada)

Join Zoom Meeting https://bostonu.zoom.us/j/92006552342?pwd=akFTd1NwWmlvSk54dGpCRS9uVlQ0dz09

Meeting ID: 920 0655 2342

Passcode: 435913

2024 Activities

2024 GEM Summer Workshop

SCIMM Session

Date: Monday, June 24th, 10:30 am - 12:00 pm MDT

1. Yiwen Zhu: Ionospheric O+ outflows impact on storm time ring current region

2. Sina Sadeghzadeh: Recent (Rice Convection Model) RCM simulation

3. Xingzhi Lyu: RCM modeling with EMIC waves

4. Paul Bernhardt: Generation of intense whistlers with HAARP for RBR

5. Donglai Ma: Excitation of whistler waves by electron transverse anisotropy in a laboratory plasma

6. Cristian Ferradas: The role of the terrestrial exosphere in the storm-time ring current decay

SCIMM Poster Session

Date: Monday, June 24th, 1:30 pm - 3:00 pm MDT

SCIMM-CP Joint Session

Date: Thursday, June 27th, 1:30 pm - 3:00 pm MDT

1. Hyunju Connor: Exospheric density variabilities in the inner magnetosphere during solar minimum and maximum: MATE simulation results

2. Justin Lee: Statistical analysis and modeling of magnetospheric ion composition during EMIC wave activity

3. Shujie Gu: The role of cold oxygen ions in the EMIC wave growth

4. Ning Kang: The principal role of chorus ducting for night-side relativistic electron precipitation

MLGEM-RB-SCIMM-CP Joint Session

Date: Thursday, June 27th, 3:30 pm - 5:00 pm MDT