Difference between revisions of "FG: Magnetospheric Sources of Particle Precipitation and Their Role on Electrodynamic Coupling of Magnetosphere-Ionosphere-Thermosphere Systems"
Line 26: | Line 26: | ||
The tentative meeting schedule is as follows. | The tentative meeting schedule is as follows. | ||
− | Louis Ozeke, "The Relationship between Intense Electron Precipitation and Electron Injections" | + | Louis Ozeke, "The Relationship between Intense Electron Precipitation and Electron Injections" <br> |
− | Aaron Breneman, "NASA Space Precipitation Impacts Group" | + | Aaron Breneman, "NASA Space Precipitation Impacts Group" <br> |
− | Tian Sheng, "Auroral Beads in Conjunction With Kinetic Alfvén Waves in the Equatorial Inner-Magnetosphere" | + | Tian Sheng, "Auroral Beads in Conjunction With Kinetic Alfvén Waves in the Equatorial Inner-Magnetosphere" <br> |
− | Margaret Chen, "Diffuse Auroral Precipitation Effects on Ionospheric Conductance, Particle, and Joule Heating During the 17 March 2015 Storm" | + | Margaret Chen, "Diffuse Auroral Precipitation Effects on Ionospheric Conductance, Particle, and Joule Heating During the 17 March 2015 Storm" <br> |
− | Lonxing Ma, "Simulating the Global Distribution of particle precipitation in response to ULF waves" | + | Lonxing Ma, "Simulating the Global Distribution of particle precipitation in response to ULF waves" <br> |
== 2022 GEM Workshop Agenda == | == 2022 GEM Workshop Agenda == |
Revision as of 11:48, 9 December 2022
The particles precipitating from the magnetosphere play an important role in the determination and modelling of ionospheric electrodynamics, especially conductance which modulates the magnetosphere’s response to the solar wind. Precipitation of magnetospheric particles and their energy deposition in the Earth’s upper atmosphere depend on a number of parameters including, but not limited to, their magnetospheric origin, energy range, flux, auroral display, spatiotemporal scale, etc. As a result, the ionospheric conductance can be modified in various ways further affecting the plasma convection, field-aligned (FAC) and ionospheric currents, and ionospheric/thermospheric temperature and densities. Therefore, understanding the properties of different sources of magnetospheric precipitation and their relative roles in the electrodynamic coupling of M-I across a broad range of spatiotemporal scales is crucial for improving predictive modelling capabilities. This broad topic necessitates the existence of a designated GEM focus group to achieve a community-wide collaboration.
🪑 Focus Group Chairs
- Doğacan Su Öztürk -- University of Alaska Fairbanks, 📨 to Doğa
- Dong Lin -- High Altitude Observatory, National Center for Atmospheric Research, 📨 to Dong
- Yiqun Yu -- Beihang University
- Katherine Garcia-Sage -- NASA Goddard Space Flight Center
- Stephen Kaeppler -- Clemson University
🗓 Focus Group Goals
To advance the physical knowledge and improve the numerical modelling of
- The magnetospheric particle precipitation (precipitation mechanism and characteristics, magnetospheric origin, auroral forms).
- The effects of particle precipitation on the ionospheric electrodynamics, with an emphasis on the ionospheric conductance.
- Response of the I-T system to precipitation and its feedback to the Magnetosphere.
🤝 Get Involved in MPEC FG
Please sign-up to our MPEC e-mail list to learn more about our FG activities and opportunities to participate at a greater capacity: https://forms.gle/BrsYo6LCewiysUij6.
Contents
- 1 GEM Workshops
- 1.1 2022 mini-GEM Workshop Agenda
- 1.2 2022 GEM Workshop Agenda
- 1.2.1 MPEC Stand-alone session on Monday, June 20, 2022, 13:30-15:00 HDT, at Bluefin
- 1.2.2 MPEC Stand-alone session on Tuesday, June 21, 2022, 10:30-12:00 HDT, at Alohilani II
- 1.2.3 MPEC-SCIMM joint session on Wednesday, June 22, 2022, 13:30-15:00 HDT, at Alohilani II
- 1.2.4 MPEC-IEMIT joint session on Thursday, June 23, 2022, 13:30-15:00 HDT, at Alohilani II
GEM Workshops
2022 mini-GEM Workshop Agenda
The MPEC session will take place on Sunday, December 11th between 15.30-17.00 CT in Williford B Room of the Hilton Chicago Hotel (720 South Michigan Avenue). There will also be a hybrid component accessible via Zoom. (https://alaska.zoom.us/j/87956087298?pwd=ZnY2cUExeVFHV0djcmxKOTBUTm9HQT09)
The tentative meeting schedule is as follows.
Louis Ozeke, "The Relationship between Intense Electron Precipitation and Electron Injections"
Aaron Breneman, "NASA Space Precipitation Impacts Group"
Tian Sheng, "Auroral Beads in Conjunction With Kinetic Alfvén Waves in the Equatorial Inner-Magnetosphere"
Margaret Chen, "Diffuse Auroral Precipitation Effects on Ionospheric Conductance, Particle, and Joule Heating During the 17 March 2015 Storm"
Lonxing Ma, "Simulating the Global Distribution of particle precipitation in response to ULF waves"
2022 GEM Workshop Agenda
There will be 2 stand-alone and 2 joint MPEC sessions. Please follow our slack channel for notifications and discussions: https://gemworkshop.slack.com/archives/C03GNRQAYCF
MPEC Stand-alone session on Monday, June 20, 2022, 13:30-15:00 HDT, at Bluefin
This session will focus on observational studies of magnetospheric sources of particle precipitation.
1. Allison Jaynes, "Rocket Missions and the Energetic Content of Pulsating Aurora"
2. Riley Troyer, "Substorm Activity as a Driver of Energetic Pulsating Aurora"
3. Mykhaylo Shumko, "The Association of Relativistic Electron Microbursts With the Aurora"
4. Jone Peter Reistad, "Origins of keV Electron Precipitation in the Summer Hemisphere Polar Cap: On the Structure and Dynamics of High Latitude Dayside Aurora"
5. Christine Gabrielse, "Estimating Precipitating Energy Flux, Average Energy, and Hall Auroral Conductance in 2D From THEMIS All-Sky-Imagers With Focus on Mesoscales"
6. Jiang Liu, "Embedded R1 and R2 Currents: a Source of Intense Precipitation, and Their Preferred Condition"
7. Harneet Sangha, "An Analysis of Region 2 Field-Aligned Current Bifurcations"
MPEC Stand-alone session on Tuesday, June 21, 2022, 10:30-12:00 HDT, at Alohilani II
This session will focus on numerical studies of magnetospheric sources of particle precipitation.
1. Bill Lotko, TBD (Modelling of Magnetospheric Particle Precipitation)
2. Eftyhia Zesta, "Role of Ion Precipitation in M-I Coupling and Electron Upflow"
3. Yu Lin, "Cusp Ion Precipitation Associated with Magnetopause Reconnection Viewed from Global Hybrid Simulation"
4. Yann Pfau-Kempf, "Magnetosphere-Ionosphere Coupling in Vlasiator"
5. Maxime Grandin, "First 3D Results with Vlasiator on Auroral Proton Precipitation During Southward Interplanetary Magnetic Field Driving"
6. Shanshan Bao, "Gray-box Modeling of Particle Scattering and Auroral Precipitation"
7. Zihan Wang, "COMPASS: A New COnductance Model Based on PFISR And SWARM Satellite Observations"
MPEC-SCIMM joint session on Wednesday, June 22, 2022, 13:30-15:00 HDT, at Alohilani II
1. Raluca Ilie, "Ionospheric Feedback to the Magnetosphere"
2. Michael Hartinger, "ULF Wave Modulation of Total Electron Content"
3. Mei-Ching Fok, TBD (Particle precipitation with the CIMI model)
4. Yongliang Zhang, "Ring Current Aurora"
5. Qianli Ma, "Electron Precipitation and Ionospheric Density Enhancements due to Hiss"
6. Dillon Gillespie, "Global Statistics of Diffuse Electron Aurora and Ionospheric Conductance Directly Derived from Whistler-mode Chorus Waves"
7. Dong Lin, "Origin of the Dawnside SAPS During Major Geomagnetic Storms"
MPEC-IEMIT joint session on Thursday, June 23, 2022, 13:30-15:00 HDT, at Alohilani II
1. Emma Spanswick, "Proposed Upgrades to UCalgary & UAlberta Ground Arrays in Advance of GDC"
2. Hyomin Kim, "Riometer Observations of Particle Precipitation During the LAMP Mission"
3. Jeremiah Johnson, "Understanding Auroral Morphology Through Self-Supervised Machine Learning"
4. Margaret Chen, "Effects of Diffuse Auroral Precipitation on Ionospheric Conductivity and Joule Heating During Storms: Simulation and Data Comparisons"
5. Agnit Mukhopadhyay, "Global Driving of Auroral Precipitation"
6. Eftyhia Zesta, "Impact of the Precipitation Energy Distribution on the I-T system"