Difference between revisions of "RG: Machine Learning"

From gem
Jump to navigation Jump to search
Line 23: Line 23:
  
 
==Goals and Objectives==
 
==Goals and Objectives==
 
Our overarching goals are to develop an ML-based geospace environment model and advance
 
system-of-systems science in Sun-Earth interaction. Over the 4-year focus group period, we will
 
implement the following objectives to achieve these goals:
 
  
 
'''1. Invite community-wide ML efforts:''' Extend invitations to a diverse community, including GEM, CEDAR, SHINE, and ML communities, fostering broader participation and collaboration.
 
'''1. Invite community-wide ML efforts:''' Extend invitations to a diverse community, including GEM, CEDAR, SHINE, and ML communities, fostering broader participation and collaboration.

Revision as of 12:57, 30 April 2024

Chairs

Table 1: RG Chairs.
Name Affiliation Email
1. Hyunju Connor NASA GSFC [1]
2. Matthew Argall UNH [2]
3. Xiangning Chu LASP, CU Boulder [3]
4. Bashi Ferdousi AFRL [4]
5. Valluri Sai Gowtam UAF [5]

About the ML-GEM Resource Group

Machine Learning based Geospace Environment Modeling (ML-GEM) is a new resource group selected by the GEM Steering Committee, with two primary goals: advancing system-of-systems science in Sun-Earth interaction from a data-driven perspective and developing an ML-based Geospace Environment Modeling by integrating community-wide ML efforts.

Goals and Objectives

1. Invite community-wide ML efforts: Extend invitations to a diverse community, including GEM, CEDAR, SHINE, and ML communities, fostering broader participation and collaboration.

2. Share ML advancements: Disseminate the latest ML techniques, including their advantages and disadvantages, and lessons learned. This knowledge-sharing will support community-wide geospace environment modeling efforts.

3. Facilitate integration discussions: Stimulate discussions on integrating diverse ML models across geospace systems, such as solar wind, magnetosheath, cusp, ring current, radiation belt, plasmasphere, and ionosphere.

4. Develop ML-based models: Initiate the development of an ML-based geospace environment model and encourage the strategic creation and inclusion of ML components in ML-GEM for enhanced performance.

5. Explore systematic responses: Investigate system-of-systems science in the solar wind – Earth interaction by leveraging ML-GEM and other ML models.

6. Compile a catalog of ML-ready dataset: Cleaning and preparing datasets constitute a substantial portion of machine learning model development. We will curate a list of existing ML-ready datasets in heliophysics for various scientific purposes.

GEM-2024 Activities

ML-GEM chairs have scheduled 4 sessions for the upcoming 2024 GEM Summer workshop held in Fort Collins, Colorado during June 23-28:

1. ML-GEM stand-alone session : All ML efforts across the GEM research areas are invited.

2. ML-GEM joint session with the Inner Magnetosphere Focus Groups : ML efforts particularly in the inner magnetosphere research area are invited.

3. ML-GEM discussion session : Please submit a summary of your ML model (1-2 slides) — the slide format to be announced — and join the discussion on how to integrate your model into a unified, data-driven geospace environment model.

4. ML-GEM tutorial session: A hands-on tutorial on the Long Short-Term Memory (LSTM) technique that models time-series data. This tutorial will use the LSTM model and the SuperMAG geomagnetic field data, published in Blandin et al. (2022; https://doi.org/10.3389/fspas.2022.846291).

If you are interested in giving a talk in these sessions, please submit your talk at the following website: https://forms.gle/fmsU2eeBFFwD4tDQ8.