Difference between revisions of "RG: Machine Learning"
Line 92: | Line 92: | ||
'''3. ML-GEM discussion session (10:30am - 12:00pm on 06/28 Friday):''' We will showcase currently available AI models in the heliophysics community and discuss how to unify them into a single AI modeling framework for understanding and predicting the geospace environment. Please submit a 2-page summary of your AI model at https://docs.google.com/presentation/d/1qzgn880hCaDHLkEhL6GUEcEI3m5SJjQK/edit?usp=drive_link&ouid=115923735998882159942&rtpof=true&sd=true | '''3. ML-GEM discussion session (10:30am - 12:00pm on 06/28 Friday):''' We will showcase currently available AI models in the heliophysics community and discuss how to unify them into a single AI modeling framework for understanding and predicting the geospace environment. Please submit a 2-page summary of your AI model at https://docs.google.com/presentation/d/1qzgn880hCaDHLkEhL6GUEcEI3m5SJjQK/edit?usp=drive_link&ouid=115923735998882159942&rtpof=true&sd=true | ||
+ | |||
+ | {| class="wikitable" | ||
+ | |+ style="caption-side:top; text-align:middle | ML-GEM Standalone/Discussion Session: 10:30 - 12:00pm on Friday, Jun 28 | ||
+ | ! !! Name !! Affiliation !! Title !! Time !! Topic | ||
+ | |- | ||
+ | Standalone Session (Overflow) - 8min/talk | ||
+ | |- | ||
+ | | 1 || Jacob Bortnik || UCLA || Using interpretable AI to discover the drivers of acceleration vs depletion radiation belt events || 10:30 || Inner Mag | ||
+ | |- | ||
+ | | 2 || Qusai Al Shidi || WVU || Reduced Order Probabilistic Emulator of RAM-SCB: Towards Non-linearity with Deep Learning || 10:38 || Inner Mag | ||
+ | |- | ||
+ | | 3 || Man Hua || UCLA || Machine‐learning based identification of the critical driving factors controlling storm‐time outer radiation belt electron flux dropouts || 10:46 || Inner Mag | ||
+ | |- | ||
+ | Discussion Session | ||
+ | |- | ||
+ | | 4 || Hyunju Connor || NASA/GSFC || Overview of ML-GEL goals, plan, and discussion topics || 10:54 || | ||
+ | |- | ||
+ | | 5 || Everyone || Presentation of current ML models (2min/model) : Submit slide format || 11:00 || | ||
+ | |- | ||
+ | | || || - Discussion || || || | ||
+ | |- | ||
+ | | || || 1. Integrate the ML models into a unified AI framework of Heliophysics Modeling || || | ||
+ | |- | ||
+ | | || || 2. Select a common testing dataset (year, storms, substorms) for the framework validation || || | ||
+ | |- | ||
+ | | || || 3. Determine actim items for next ML-GEM meeting || || | ||
+ | |- | ||
+ | } | ||
'''4. ML-GEM tutorial session (1:30 - 3:00pm on 06/28 Friday):''' A hands-on tutorial on the Long Short-Term Memory (LSTM) technique that models time-series data. This tutorial will use the LSTM model and the SuperMAG geomagnetic field data, published in Blandin et al. (2022; https://doi.org/10.3389/fspas.2022.846291). | '''4. ML-GEM tutorial session (1:30 - 3:00pm on 06/28 Friday):''' A hands-on tutorial on the Long Short-Term Memory (LSTM) technique that models time-series data. This tutorial will use the LSTM model and the SuperMAG geomagnetic field data, published in Blandin et al. (2022; https://doi.org/10.3389/fspas.2022.846291). |
Revision as of 20:14, 22 June 2024
Chairs
Name | Affiliation | |
---|---|---|
1. Hyunju Connor | NASA GSFC | [1] |
2. Matthew Argall | UNH | [2] |
3. Xiangning Chu | LASP, CU Boulder | [3] |
4. Bashi Ferdousi | AFRL | [4] |
5. Valluri Sai Gowtam | UAF | [5] |
About the ML-GEM Resource Group
Machine Learning based Geospace Environment Modeling (ML-GEM) is a new resource group selected by the GEM Steering Committee, with two primary goals: advancing system-of-systems science in Sun-Earth interaction from a data-driven perspective and developing an ML-based Geospace Environment Modeling by integrating community-wide ML efforts.
Goals and Objectives
1. Invite community-wide ML efforts: Extend invitations to a diverse community, including GEM, CEDAR, SHINE, and ML communities, fostering broader participation and collaboration.
2. Share ML advancements: Disseminate the latest ML techniques, including their advantages and disadvantages, and lessons learned. This knowledge-sharing will support community-wide geospace environment modeling efforts.
3. Facilitate integration discussions: Stimulate discussions on integrating diverse ML models across geospace systems, such as solar wind, magnetosheath, cusp, ring current, radiation belt, plasmasphere, and ionosphere.
4. Develop ML-based models: Initiate the development of an ML-based geospace environment model and encourage the strategic creation and inclusion of ML components in ML-GEM for enhanced performance.
5. Explore systematic responses: Investigate system-of-systems science in the solar wind – Earth interaction by leveraging ML-GEM and other ML models.
6. Compile a catalog of ML-ready dataset: Cleaning and preparing datasets constitute a substantial portion of machine learning model development. We will curate a list of existing ML-ready datasets in heliophysics for various scientific purposes.
GEM-2024 Activities
ML-GEM chairs have scheduled 4 sessions for the upcoming 2024 GEM Summer workshop held in Fort Collins, Colorado during June 23-28.
1. ML-GEM stand-alone session (10:30am - 12:00pm on 06/27 Thursday): All ML efforts across the GEM research areas are invited.
Zoom Link: https://unh.zoom.us/j/92641406400?pwd=ghwL2kuHUr4ZUCcZZVd8rVFk1Q5XGn.1, Password: 452277.
8min/presentation. We recommend 6min presentation, 1min question, and 1min transition.
Name | Affiliation | Title | Time | Topic | |
---|---|---|---|---|---|
1 | Mikhail Sitnov | APL/JHU | Data mining of the cislunar magnetotail | 10:30 | Tail/nightside |
2 | Savvas Raptis | APL/JHU | Modeling Earth's Plasma Sheet with Machine learning | 10:38 | Tail/nightside |
3 | Xiaofei Shi | UCLA | Data mining-based reconstruction of the transition region in the nightside magnetosphere validated through ELFIN isotropic boundaries | 10:46 | Tail/nightside |
4 | James Edmond/Jimmy Raeder | UNH | Clustering of Plasma Region Observations using Self-Organizing Maps | 10:54 | Dayside |
5 | Connor O'Brien | BU | PRIME-SH: A Data-Driven Probabilistic Model of Earth’s Magnetosheath | 11:02 | Dayside |
6 | Sai Gowtam Valluri | UAF | Machine Learning-based Particle Precipitation Model (ML-PPM) | 11:10 | Ionosphere |
7 | Matthew Blandin | UAF | Residual Convolutional Neural Networks for Global Geomagnetic Field Predictions | 11:18 | GIC |
8 | Jonathan Mellina | LASP | Tidal Effects in Earth's Plasmasphere Using a Machine Learning Model | 11:26 | Plasmasphere |
9 | Wen Li | BU | Integrate Deep Learning into Physics-Based Simulation: Modeling Global Electron Precipitation Driven by Whistler Mode Waves | 11:34 | Inner Mag |
10 | Evan McPherson | LASP | Imbalanced Regressive Model of Electron Fluxes in the Earth's Outer Radiation Belt | 11:42 | Inner Mag |
11 | Xiangning Chu | LASP | Imbalanced regressive neural network model for whistler-mode hiss waves: spatial and temporal evolution | 11:50 | Inner Mag |
2. ML-GEM joint session with the Inner Magnetosphere Focus Groups (3:30 - 05:00 PM on 06/27 Thursday): ML efforts particularly in the inner magnetosphere research area are invited. We will discuss how to align ML efforts with current science associated with the SCIMM/RB/CP Focus Groups. An outcome will be to identify an open question, pair ML and data analysts, and create a plan to pursue answers for the next GEM Workshop.
Zoom Link: https://unh.zoom.us/j/93264767597?pwd=tjaJrNendpMdMGP8aaYbRKrIGnCVbO.1. Password: 435443
The discussion-only session with inner MAG focus groups.
Name | Affiliation | Title | Time | Topic | |
---|---|---|---|---|---|
1 | FG/RG Chairs | Science questions for MLGEM, RB, SCIMM, and CP fields | |||
2 | Everyone | Discussion | |||
- Identify an open question, pair ML and data analysts, and create a plan to pursue answers for the next GEM Workshop. |
3. ML-GEM discussion session (10:30am - 12:00pm on 06/28 Friday): We will showcase currently available AI models in the heliophysics community and discuss how to unify them into a single AI modeling framework for understanding and predicting the geospace environment. Please submit a 2-page summary of your AI model at https://docs.google.com/presentation/d/1qzgn880hCaDHLkEhL6GUEcEI3m5SJjQK/edit?usp=drive_link&ouid=115923735998882159942&rtpof=true&sd=true
Name | Affiliation | Title | Time | Topic | |
---|---|---|---|---|---|
1 | Jacob Bortnik | UCLA | Using interpretable AI to discover the drivers of acceleration vs depletion radiation belt events | 10:30 | Inner Mag |
2 | Qusai Al Shidi | WVU | Reduced Order Probabilistic Emulator of RAM-SCB: Towards Non-linearity with Deep Learning | 10:38 | Inner Mag |
3 | Man Hua | UCLA | Machine‐learning based identification of the critical driving factors controlling storm‐time outer radiation belt electron flux dropouts | 10:46 | Inner Mag |
4 | Hyunju Connor | NASA/GSFC | Overview of ML-GEL goals, plan, and discussion topics | 10:54 | |
5 | Everyone | Presentation of current ML models (2min/model) : Submit slide format | 11:00 | ||
- Discussion | |||||
1. Integrate the ML models into a unified AI framework of Heliophysics Modeling | |||||
2. Select a common testing dataset (year, storms, substorms) for the framework validation | |||||
3. Determine actim items for next ML-GEM meeting |