Difference between revisions of "FG: Particle Heating and Thermalization in Collisionless Shocks in the MMS Era"

From gem
Jump to navigation Jump to search
Line 14: Line 14:
  
 
'''Topic'''
 
'''Topic'''
 +
 
Particle heating and thermalization in collisionless shocks are important unsolved problems, because of the challenges to resolve the kinetic scales with past in-situ data and simulations. Further progress in modeling collisionless shocks and validating MHD, hybrid, and PIC simulations requires resolving particle heating and thermalization processes from the ion to electron kinetic scales. Understanding these processes to the level with predictive capabilities will advance simulations of collisionless shock waves and wave-particle interactions, whether occurring near-Earth or other regions of space. The broad goals of the FG are to address (1) the structure of the quasi-static electric fields in collisionless shocks and their role in particle heating, (2) waves/structures in collisionless shocks and their generation mechanisms, (3) contributions of quasi-static and high-frequency electric fields to particle heating and thermalization and (4) enabling advances of MHD, hybrid, and PIC simulations to model the Earth’s bow shock and magnetosheath plasma. We expect to have strong collaborations with other focus groups that study the phenomena sensitive to the solar wind input.
 
Particle heating and thermalization in collisionless shocks are important unsolved problems, because of the challenges to resolve the kinetic scales with past in-situ data and simulations. Further progress in modeling collisionless shocks and validating MHD, hybrid, and PIC simulations requires resolving particle heating and thermalization processes from the ion to electron kinetic scales. Understanding these processes to the level with predictive capabilities will advance simulations of collisionless shock waves and wave-particle interactions, whether occurring near-Earth or other regions of space. The broad goals of the FG are to address (1) the structure of the quasi-static electric fields in collisionless shocks and their role in particle heating, (2) waves/structures in collisionless shocks and their generation mechanisms, (3) contributions of quasi-static and high-frequency electric fields to particle heating and thermalization and (4) enabling advances of MHD, hybrid, and PIC simulations to model the Earth’s bow shock and magnetosheath plasma. We expect to have strong collaborations with other focus groups that study the phenomena sensitive to the solar wind input.

Revision as of 11:45, 25 March 2019

Focus Group Chairs

  1. Lynn Wilson, NASA Goddard Space Flight Center (lynn.b.wilsoniii@gmail.com)
  2. Li-Jen Chen, Astronomy Department, University of Maryland, College Park (lijen@mailaps.org)
  3. Katherine Goodrich, Space Sciences Laboratory, University of California at Berkeley (katygoodrich@berkeley.edu)
  4. Ivan Vasko, Space Sciences Laboratory, University of California at Berkeley (ivan.vasko@ssl.berkeley.edu)


Term: Five years (2019-2024)


Introduction to the focus group

Topic

Particle heating and thermalization in collisionless shocks are important unsolved problems, because of the challenges to resolve the kinetic scales with past in-situ data and simulations. Further progress in modeling collisionless shocks and validating MHD, hybrid, and PIC simulations requires resolving particle heating and thermalization processes from the ion to electron kinetic scales. Understanding these processes to the level with predictive capabilities will advance simulations of collisionless shock waves and wave-particle interactions, whether occurring near-Earth or other regions of space. The broad goals of the FG are to address (1) the structure of the quasi-static electric fields in collisionless shocks and their role in particle heating, (2) waves/structures in collisionless shocks and their generation mechanisms, (3) contributions of quasi-static and high-frequency electric fields to particle heating and thermalization and (4) enabling advances of MHD, hybrid, and PIC simulations to model the Earth’s bow shock and magnetosheath plasma. We expect to have strong collaborations with other focus groups that study the phenomena sensitive to the solar wind input.